Measurement of Sixth Cumulant of the Net-Proton Multiplicity Distributions in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV at the STAR Experiment

Toshihiro Nonaka, for the STAR Collaboration

University of Tsukuba, CiRfSE

Lattice QCD calculation predicts the phase transition at small μ_{B} is the smooth crossover. Experimentally, however, there is still no direct evidence for the phase transition. The sixth order cumulant (C_6) is predicted to probe the phase transition, that will be negative at the phase transition. In this poster, the sixth order cumulant (C_6) of net-proton multiplicity distribution has been measured at the extended p_T region (0.4 < p_T < 2.0 GeV/c) with efficiency correction in Au+Au collisions in V_{NN} = 200 GeV. Centrality, p_T and rapidity dependence of C_6/C_2 are presented.

Motivation Smooth crossover at small μ_{B} predicted by Lattice QCD

STAR

K. Fukushima and T. Hatsuda, Rept. Prog. Phys. 74, 014001(2011)

Quark-Gluon Plasma

DEfficiency correction

• Calculation cost for efficiency correction become large by power of efficiency bins with formulas based on the factorial moments (Bzdak and Koch, 2016), which is crucial for the sixth order cumulant. • Nonaka, Kitazawa and Esumi developed a new efficiency correction. Calculation cost increases linearly with the number of efficiency bins. • In addition to the p_{T} dependence, acceptance non-uniformity in phi direction are corrected.

X. Luo and N. Xu, arXiv: 1701.02105

Proton identification

Analysis techniques

• Large and uniform acceptance with full azimuthal angles with $|\eta| < 1.0$

 $\langle Q^6 \rangle_{\rm c} = \langle q^6_{(1,1)} \rangle_{\rm c} - 15 \langle q^4_{(1,1)} q_{(2,2)} \rangle_{\rm c} + 15 \langle q^4_{(1,1)} q_{(2,1)} \rangle_{\rm c} - 90 \langle q^2_{(1,1)} q_{(2,2)} q_{(2,1)} \rangle_{\rm c}$ $+40\langle q_{(1,1)}^3 q_{(3,3)} \rangle_{\rm c} +45\langle q_{(2,2)}^2 q_{(1,1)}^2 \rangle_{\rm c} +20\langle q_{(1,1)}^3 q_{(3,1)} \rangle_{\rm c} -60\langle q_{(1,1)}^3 q_{(3,2)} \rangle_{\rm c}$ *M* : # of efficiency bins $+45\langle q_{(1,1)}^2 q_{(2,1)}^2 \rangle_{\rm c} - 90\langle q_{(1,1)}^2 q_{(4,4)} \rangle_{\rm c} - 120\langle q_{(3,3)} q_{(2,2)} q_{(1,1)} \rangle_{\rm c} - 15\langle q_{(2,2)}^3 \rangle_{\rm c}$ $+15\langle q_{(1,1)}^2 q_{(4,1)} \rangle_{\rm c} - 60\langle q_{(1,1)} q_{(2,2)} q_{(3,1)} \rangle_{\rm c} - 60\langle q_{(1,1)}^2 q_{(4,2)} \rangle_{\rm c}$ $+120\langle q_{(1,1)}q_{(2,1)}q_{(3,3)}\rangle_{c}+180\langle q_{(1,1)}^{2}q_{(4,3)}\rangle_{c}+45\langle q_{(2,2)}^{2}q_{(2,1)}\rangle_{c}$ $+180\langle q_{(1,1)}q_{(2,2)}q_{(3,2)}\rangle_{\rm c} -45\langle q_{(1,1)}^2q_{(4,2)}\rangle_{\rm c} -45\langle q_{(2,1)}^2q_{(2,2)}\rangle_{\rm c}$ $q_{(r,s)} \equiv \sum_{i=1}^{m} \frac{a_i^r}{p_i^s} n_i.$ $-180\langle q_{(1,1)}q_{(2,1)}q_{(3,2)}\rangle_{\rm c} + 60\langle q_{(1,1)}q_{(2,1)}q_{(3,1)}\rangle_{\rm c} + 15\langle q_{(2,1)}\rangle_{\rm c}$ $+144\langle q_{(5,5)}q_{(1,1)}\rangle_{c} +90\langle q_{(4,4)}q_{(2,2)}\rangle_{c} +40\langle q_{(3,3)}^{2}\rangle_{c} +6\langle q_{(5,1)}q_{(1,1)}\rangle_{c}$ \rightarrow Nonaka, Kitazawa and $+15\langle q_{(4,1)}q_{(2,1)}\rangle_{\rm c} + 10\langle q_{(3,1)}^2\rangle_{\rm c} - 30\langle q_{(5,2)}q_{(1,1)}\rangle_{\rm c} - 15\langle q_{(4,1)}q_{(2,2)}\rangle_{\rm c}$ Esumi : in preparation $+300\langle q_{(5,3)}q_{(1,1)}\rangle_{\rm c}+40\langle q_{(3,3)}q_{(3,1)}\rangle_{\rm c}+60\langle q_{(4,2)}q_{(2,2)}\rangle_{\rm c}-360\langle q_{(5,4)}q_{(1,1)}\rangle_{\rm c}$ $-90\langle q_{(4,4)}q_{(2,1)}\rangle_{\rm c} - 120\langle q_{(3,3)}q_{(3,2)}\rangle_{\rm c} - 180\langle q_{(4,3)}q_{(2,2)}\rangle_{\rm c}$ $+180\langle q_{(4,3)}q_{(2,1)}\rangle_{\rm c}+45\langle q_{(4,2)}q_{(2,2)}\rangle_{\rm c}+90\langle q_{(3,2)}^2\rangle_{\rm c}$ $-60\langle q_{(3,2)}q_{(3,1)}\rangle_{\rm c} - 60\langle q_{(4,2)}q_{(2,1)}\rangle_{\rm c} - 60\langle q_{(5,2)}q_{(1,1)}\rangle_{\rm c} - 45\langle q_{(4,2)}q_{(2,1)}\rangle_{\rm c}$ $-120\langle q_{(6,6)}\rangle_{\rm c} + 360\langle q_{(6,5)}\rangle_{\rm c} - 390\langle q_{(6,4)}\rangle_{\rm c} + 180\langle q_{(6,3)}\rangle_{\rm c} - 31\langle q_{(6,2)}\rangle_{\rm c} + \langle q_{(6,1)}\rangle_{\rm c}.$

Results

1.2

n : # of particles

a : electric charge

p : efficiency

- y < 0.5 -	+ 0.4 < p _T < 2.0 (GeV/c) +
1	

latter

- At low p_T region (0.4 < p_T < 0.8 GeV/c) dE/dx measured by TPC is used.
- At high p_T region (0.8 < p_T < 2.0 GeV/c) combined PID with TOF is implemented.

Centrality determination

• Use charged particles except protons in order to avoid the autocorrelation.

Centrality bin width correction

Calculate cumulants at each multiplicity bin and average them in • one centrality, which leads to the supression of the volume fluctuation.

Statistical errors : Bootstrap

- Make a new distribution by random sampling from the original netproton distribution and calculate cumulants.
- This procedure is repeated with 300 times, and the statistical errors are taken from the RMS of the cumulants.

Summary

- \succ We present high statistics results of centrality, p_T and rapidity dependence of C_6/C_2 of net-proton multiplicity distributions from v_{NN} = 200 GeV in Au+Au collisions.
- \succ Results are consistent with zero within 2σ with current statistics.

Toshihiro Nonaka tnonaka@rcf.rhic.bnl.gov

The STAR Collaboration drupal.star.bnl.gov/STAR/presentations

