First Measurement of the Sixth Order Cumulant of Net-Proton Multiplicity Distributions in √s_{NN} = 200 GeV Au+Au Collisions at the STAR Experiment

Toshihiro Nonaka 2018/2/9

My work

✦ 2 papers and 5 international conference (oral)

 PRC. 94. 034909 T. Nonaka, S. Esumi, H. Masui, T. Sugiura, X. Luo "Importance of separated efficiencies between positively and negatively charged particles for cumulant calculations" PRC. 95. 064912 T. Nonaka, M. Kitazawa, S. Esumi "More efficient formulas for efficiency correction of cumulants and effect of using averaged efficiency" 	 CiRfSE workshop 2016 "Higher order cumulant of net-proton distribution" ATHIC 2016 "Importance of separated efficiencies between positively and negatively charged particles for cumulant calculations" TGSW 2016 "Fluctuation of Conserved Quantities to look for Critical Point in Phase Diagram" WPCF 2017 "Measurement of Sixth Order Cumulant of Net-Proton Multiplicity Distribution in Au+Au collisions at √s_{NN} = 200 GeV from the STAR experiment" EMMI workshop "Correction methods for detector effects on cumulants"
JPS : 2016 fall, 2017 spring, 2017 fall QM2017 (poster) Support MRPC developement STAR shift taking (M2, D1, D2) seminar @Osaka Univ. (last month)	

Introduction

QCD phase diagram

- Quark Gluon Plasma can be experimentally created by heavy ion collisions.
- Higher order fluctuations of conserved quantities can probe the QCD phase structure.

✓ Crossover at µB=0

Y. Aoki, Nature 443, 675(2006)

✓ 1st order phase transition at large µ_B?

✓ Critical point?

Higher order fluctuations

- Moments and Cumulants are mathematical measures of "shape" of a histogram which probe the fluctuation of observables.
 - **\checkmark** Moments : Mean(*M*), sigma(*σ*), skewness(*S*) and kurtosis(κ).
 - S and κ are non-gaussian fluctuations.

✓ Cumulant \rightleftharpoons Moment

$$\langle \delta N \rangle = N - \langle N \rangle$$

$$C_1 = M = \langle N \rangle$$

$$C_2 = \sigma^2 = \langle (\delta N)^2 \rangle$$

$$C_3 = S\sigma^3 = \langle (\delta N)^3 \rangle$$

$$C_4 = \kappa \sigma^4 = \langle (\delta N)^4 \rangle - 3 \langle (\delta N)^2 \rangle^2$$

✓ Cumulant : additivity

 $C_n(X+Y) = C_n(X) + C_n(Y)$

Fluctuations of conserved quantities

Net-baryon, net-charge and net-strangeness X. Luo, CiRfSE workshop 2016 @Tsukuba University "Net" : positive - negative **Fill in histograms** 10⁶ Au+Au 200 GeV • * 0-5% over many collisions Number of Events 10, 10 10, 01 $\Delta N_q = N_q - N_{\overline{q}}, \quad q = B, Q, S$ 0.4<p_<0.8 (GeV/c) **30-40%** |y|<0.5 70-80% No. of positively charged No. of negatively charged particles in one collision particles in one collision (1) Sensitive to correlation length $C_2 = \langle (\delta N)^2 \rangle_c \approx \xi^2$ $C_5 = \langle (\delta N)^5 \rangle_c \approx \xi^{9.5}$ $C_3 = \langle (\delta N)^3 \rangle_c \approx \xi^{4.5} \quad C_6 = \langle (\delta N)^6 \rangle_c \approx \xi^{12}$ -20 -10 0 10 20 Net Proton (ΔN_p) $C_4 = \langle \delta N \rangle^4 >_c \approx \xi^7$ →neutrons cannot be measured (2) Direct comparison with susceptibilities. 10.0 χ_4^{Q} M. Cheng et al, PRD 79, 074505 (2009) 8.0 $S\sigma = \frac{C_3}{C_2} = \frac{\chi_3}{\chi_2} \quad \kappa \sigma^2 = \frac{C_4}{C_2} = \frac{\chi_4}{\chi_2}$ 6.0 open: N_T=4 full: N_τ=6 4.0

$$\chi_n^q = \frac{1}{VT^3} \times C_n^q = \frac{\partial^n p / T^4}{\partial \mu_q^n}, \quad q = B, Q, S$$

Volume dependence can be canceled by taking ratio.

T. Nonaka, Defence for Ph.D thesis, Feb. 9

300

250

[MeV

400

350

2.0

0.0

150

200

450

Statistical baseline (Poisson)

- Higher order fluctuations are compared to statistical baselines of the Poisson distribution.
- Poisson Poisson = Skellam

μ₁, μ₂ : mean parameter of Poisson $p(k; \mu_1, \mu_2) = \Pr\{K = k\} = e^{-(\mu_1 + \mu_2)} \left(\frac{\mu_1}{\mu_2}\right)^{k/2} I_k(2\sqrt{\mu_1\mu_2})$

 Odd(even) order cumulant of Skellam distribution is difference(sum) between means of two Poissons.

$$\begin{array}{l} C_{odd} = \mu_1 - \mu_2 \\ C_{even} = \mu_1 + \mu_2 \end{array} \quad S\sigma = \frac{C_3}{C_2} = \frac{\mu_1 - \mu_2}{\mu_1 + \mu_2} \qquad \kappa\sigma^2 = \frac{C_4}{C_2} = 1 \end{array}$$

$$C_4/C_2 = C_6/C_2 = 1$$

Critical end point?

✓ Measured non-momotonic behaviour of fourth order fluctuation of net-proton distribution might be a signal for the critical end point.

M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011)

Net-charge and net-kaon

✓ No non-monotonic behaviour is observed in net-charge and net-kaon.

Crossover phase transition with C₆

✓ Lattice calculations predict a "smooth crossover" at μ_B =0.

Y. Aoki, Nature 443, 675(2006)

- ✓ No experimental evidence for (crossover) phase transition.
- ✓ Any observable shows no discontinuity for this smooth crossover.
- Theoretically, the six order cumulant of net-baryon and net-charge fluctuation change sign if the chiral phase transition is close to the freeze-out line.

Friman et al, Eur. Phys. J. C (2011) 71:1694

Freeze-out conditions	$\chi_4^{\rm B}/\chi_2^{\rm B}$	$\chi_6^{\rm B}/\chi_2^{\rm B}$
HRG	1	1
QCD: $T^{\rm freeze}/T_{pc} \lesssim 0.9$	$\gtrsim 1$	≳1
QCD: $T^{\text{freeze}}/T_{pc} \simeq 1$	~0.5	<0

Known issues?

✓ Non-momotonic behaviour of fourth order fluctuation of net-proton distribution might be a signal for the critical end point.

11

Known issues?

✓ Those effects on C₆ are expected to be much larger than C₄ since the higher order cumulant consists of combinations of all the lower order cumulants.

Even if the background effects on C₄ is small enough, it is dangerous to be blind for C₆...

 $\begin{array}{rcl} C_1 &=& \mu_1, & \mu_n : n\text{-th order moment} \\ C_2 &=& \mu_2 - \mu_1^2, & \mu_n : n\text{-th order moment} \\ C_3 &=& \mu_3 - 3\mu_2\mu_1 + 2\mu_1, \\ C_4 &=& \mu_4 - 4\mu_3\mu_1 - 3\mu_2^2 + 12\mu_2\mu_1^2 - 6\mu_1^4, \\ C_5 &=& \mu_5 - 5\mu_4\mu_1 - 10\mu_3\mu_2 + 20\mu_3\mu_1 + 30\mu_2^2\mu_1 - 60\mu_2\mu_1^3 + 24\mu_1^5, \\ C_6 &=& \mu_6 - 6\mu_5\mu_1 - 15\mu_4\mu_2 + 30\mu_4\mu_1^2 - 10\mu_3^2 + 120\mu_3\mu_2\mu_1 - 120\mu_3\mu_1^3 \\ &\quad + 30\mu_2^3 - 270\mu_2^2\mu_1^2 + 360\mu_2\mu_1^4 - 120\mu_1^6, \end{array}$

Motivation

Find an experimental evidence for the phase transition with measurement of the sixth order cumulant of net-proton distribution in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV at the STAR experiment.

(The world's first measurement!)

Investigate (develop) existing (new) analysis techniques to derive "true" fluctuations

Experiment and Datasets

Detector Effect : experimental correction

- Efficiency correction
- Unfolding (NEW!)

Volume Fluctuation : physics correction

- Centrality Bin Width Correction
- Volume Fluctuation Correction (NEW!)

Results

Datasets

✓ Event selection

IVzl<30cm, IVrl<2cm, IVpdVz-Vzl<3cm Pileup rejection using tofmatched tracks

✓ Track selection

DCA<1cm, nHitsFit>20, nHitsFit/nFitPoss>0.52, nHitsDedx>5, lyl<0.5 PID cut : 0.4<pt<0.8 : InoprotonI<2

 $0.8 < p_T < 2.0$: $|n\sigma_{proton}| < 2 \&\& 0.6 < m^2 < 1.2$

- As C₆ is very statistical hungry, we focus on $\sqrt{s_{NN}} = 200$ GeV datasets which have the largest statistics.
- Minimum bias trigger for Run10 and Run11 are analyzed separately, and combine them to reduce statistical errors.

	0-10%	10-80%
Run10	~160M	~200M
Run11	~50M	~450M
Total	210M	650M

Experimental correction

Experiment and Datasets

Detector Effect

- Efficiency correction
- · Unfolding

Volume Fluctuation

- · Centrality Bin Width Correction
- Volume Fluctuation Correction

Results

Binomial model

Efficiency follows binomial distribution.

Factorial moments can be easily corrected.

- M. Kitazawa : PRC.86.024904, M. Kitazawa and M. Asakawa : PRC.86.024904
- A. Bzdak and V. Koch : PRC.86.044904, PRC.91.027901, X. Luo : PRC.91.034907
- T. Nonaka, M. Kitazawa, S. Esumi : PRC.95.064912

$$B(n,N;\varepsilon) = \frac{N!}{n!(N-n)!}\varepsilon^{n}(1-\varepsilon)^{N-n} \qquad f_{ik} = \varepsilon_{p}^{i}\varepsilon_{pbar}^{k}F_{ik} \qquad \qquad f_{ik} \equiv \left\langle \frac{n_{1}!}{(n_{1}-i)!}\frac{n_{2}!}{(n_{2}-k)!}\right\rangle$$

Corrected cumulants are expressed in terms of measured factorial moments and efficiency.

 $N_1!$

 $N_2!$

Efficiency bins

✓ Experimentally, efficiency will depend on p_T, rapidity and azimuthal angle, which needs to be implemented in the efficiency correction.

Efficiency correction with many efficiency bins

1 eff. bin

$$\begin{split} \kappa_4(\Delta N) &= \left(\left((f_{10}/\varepsilon_1) + 7(f_{20}/\varepsilon_1^2) + 6(f_{30}/\varepsilon_1^3) + (f_{40}/\varepsilon_1^4) - 4(f_{10}/\varepsilon_1)^2 - 12(f_{20}/\varepsilon_1^2)(f_{10}/\varepsilon_1) - 4(f_{30}/\varepsilon_1^3)(f_{10}/\varepsilon_1) + 6(f_{10}/\varepsilon_1)^3 + 6(f_{20}/\varepsilon_1^2)(f_{10}/\varepsilon_1)^2 - 3(f_{10}/\varepsilon_1)^4) - 4((f_{11}/\varepsilon_1/\varepsilon_2) - (f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2) + 3(f_{21}/\varepsilon_1^2/\varepsilon_2) - 3(f_{20}/\varepsilon_1^2)(f_{01}/\varepsilon_2) + (f_{31}/\varepsilon_1^3/\varepsilon_2) - (f_{30}/\varepsilon_1^3)(f_{01}/\varepsilon_2) - 3(f_{11}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1) + 3(f_{10}/\varepsilon_1)^2(f_{01}/\varepsilon_2) - 3(f_{21}/\varepsilon_1^2/\varepsilon_2)(f_{10}/\varepsilon_1) + 3(f_{20}/\varepsilon_1^2)(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2) + 3(f_{11}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1)^2 - 3(f_{10}/\varepsilon_1)^3(f_{01}/\varepsilon_2)) + 6((f_{11}/\varepsilon_1/\varepsilon_2) + (f_{12}/\varepsilon_1/\varepsilon_2^2) - 2(f_{11}/\varepsilon_1/\varepsilon_2)(f_{01}/\varepsilon_2) + (f_{10}/\varepsilon_1)^2(f_{01}/\varepsilon_2)^2 + (f_{21}/\varepsilon_1^2/\varepsilon_2) + (f_{22}/\varepsilon_1^2/\varepsilon_2^2) - 2(f_{21}/\varepsilon_1^2/\varepsilon_2)(f_{01}/\varepsilon_2) + (f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2)^2 - 2(f_{11}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1) - 2(f_{12}/\varepsilon_1/\varepsilon_2^2)(f_{10}/\varepsilon_1) + 4(f_{11}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1) + (f_{10}/\varepsilon_1)^2(f_{01}/\varepsilon_2)^2 + (f_{10}/\varepsilon_1)^2(f_{01}/\varepsilon_2) + (f_{02}/\varepsilon_2^2)(f_{10}/\varepsilon_1) + 4(f_{11}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2)^2 - 3(f_{10}/\varepsilon_1)^2(f_{01}/\varepsilon_2)^2 + (f_{10}/\varepsilon_1)^2(f_{01}/\varepsilon_2) + (f_{02}/\varepsilon_2^2)(f_{10}/\varepsilon_1) + 3(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2)^3 - 3(f_{11}/\varepsilon_1/\varepsilon_2)(f_{01}/\varepsilon_2) - 3(f_{12}/\varepsilon_1/\varepsilon_2^2)(f_{01}/\varepsilon_2) + 3(f_{11}/\varepsilon_1/\varepsilon_2)^2 - 3(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2)^3 - (f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2) - 3(f_{02}/\varepsilon_2^2)(f_{10}/\varepsilon_1) - (f_{03}/\varepsilon_3^3)(f_{10}/\varepsilon_1) + 3(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2)^2 + 3(f_{10}/\varepsilon_2)^2(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2) - 3(f_{02}/\varepsilon_2^2)(f_{10}/\varepsilon_1) - (f_{03}/\varepsilon_3^3)(f_{10}/\varepsilon_1) + 3(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2)^2 - 12(f_{02}/\varepsilon_2^2)(f_{01}/\varepsilon_2) - 4(f_{03}/\varepsilon_3^3)(f_{01}/\varepsilon_2) + 7(f_{02}/\varepsilon_2^2)(f_{01}/\varepsilon_2)^2 - 3(f_{01}/\varepsilon_2)^2 - 3(f_{01}/\varepsilon_2)^2 - 2(f_{01}/\varepsilon_2) - 4(f_{03}/\varepsilon_3^3)(f_{01}/\varepsilon_2) + 6(f_{01}/\varepsilon_2)^2 + 3(f_{01}/\varepsilon_2)^2 + 3(f_{02}/\varepsilon_2^2)(f_{01}/\varepsilon_2) - 4(f_{03}/\varepsilon_3^3)(f_{01}/\varepsilon_2) + 6(f_{01}/\varepsilon_2)^2 - 3(f_{01}/\varepsilon_2)^2 - 3(f_{01}/\varepsilon_2)^2 - 2(f_{01}/\varepsilon_2)^2 - 2(f_{01}/\varepsilon_2)^2) - (f_{01}/\varepsilon_2)^2 - 2(f_{01}/\varepsilon_2)^2) - 2((f_{01}/\varepsilon_2)^2) - (f_{01}/\varepsilon_2)^2) - (f_{01}/\varepsilon_2)^2) - 2((f_{01}/\varepsilon_1)^2) - (f_{01}/\varepsilon_2)^2 - 3(f_{01}/\varepsilon_2) + (f_{02}/\varepsilon_2^2) - (f_$$

$$\begin{split} &\kappa_4(\Delta N) = (((f_{1000}/\epsilon_1 + f_{0100}/\epsilon_2) + 7(f_{2000}/\epsilon_1^2 + f_{1000}/\epsilon_1/\epsilon_2 + f_{1000}/\epsilon_1/\epsilon_2 + f_{2000}/\epsilon_1^2) + f_{1000}/\epsilon_1^2 + f_{1000}/\epsilon_1^2) + f_{1000}/\epsilon_1^2) + f_{1000}/\epsilon_1^2 + f_{1000}/\epsilon_1^2) + f_{1000}/\epsilon_1^2 + f_{1000}/\epsilon_1^2) + f_$$

2 eff. bins : 412 terms

$\kappa_4(\Delta N) =$

$$\begin{split} \mathbf{r}_{i}(\mathbf{L}) = (||f_{i}||_{i} + ||f_{i}||_{i} + ||f_{i}||_{i}||_{i} + ||f_{i}||_{i} + ||f_{i}||_{i} + ||f_{i}||_{i}||_{i} + ||f_{i}||_{i}||_{i} + ||f_{i}||_{i}||_{i}||_{i} + ||f_{i}|||$$

 $\begin{aligned} & \text{const}(z) \leftarrow + \text{fram}(z) \leftarrow + \text{fram}(z) \left(1 + \text{fram}(z) + 1 + \text{$

3-bins 1188 terms !!

3 eff. bins : 1188 terms

Efficiency correction with many efficiency bins

1 eff. bin

 $\begin{aligned} \kappa_4(\Delta N) &= \left(\left((f_{10}/\varepsilon_1) + 7(f_{20}/\varepsilon_1^2) + 6(f_{30}/\varepsilon_1^3) + (f_{40}/\varepsilon_1^4) - 4(f_{10}/\varepsilon_1)^2 - 12(f_{20}/\varepsilon_1^2)(f_{10}/\varepsilon_1) - 4(f_{30}/\varepsilon_1^3)(f_{10}/\varepsilon_1) + 6(f_{10}/\varepsilon_1)^3 + 6(f_{20}/\varepsilon_1^2)(f_{10}/\varepsilon_1)^2 - 3(f_{10}/\varepsilon_1)^4) - 4((f_{11}/\varepsilon_1/\varepsilon_2) - (f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2) + 3(f_{21}/\varepsilon_1^2/\varepsilon_2) - 3(f_{20}/\varepsilon_1^2)(f_{01}/\varepsilon_2) + (f_{31}/\varepsilon_1^3/\varepsilon_2) - (f_{30}/\varepsilon_1^3)(f_{01}/\varepsilon_2) - 3(f_{11}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1) + 3(f_{10}/\varepsilon_1)^2(f_{01}/\varepsilon_2) - 3(f_{21}/\varepsilon_1^2/\varepsilon_2)(f_{10}/\varepsilon_1) + 3(f_{20}/\varepsilon_1^2)(f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2) + 3(f_{11}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1)^2 - 3(f_{10}/\varepsilon_1)^3(f_{01}/\varepsilon_2) + 6((f_{11}/\varepsilon_1/\varepsilon_2) + (f_{12}/\varepsilon_1/\varepsilon_2))(f_{10}/\varepsilon_1) + (f_{12}/\varepsilon_1/\varepsilon_2)(f_{10}/\varepsilon_1)^2 + (f_{12}/\varepsilon_1/\varepsilon_2) + (f_{12}/\varepsilon_2) + (f_{12}/\varepsilon_$

$$\begin{split} \kappa_4(\Delta N) &= (((f_1uo_k; + f_{1uo}/c_1) < (f_{1}uo_k; |c_1 + f_{1uo}/c_1) < (f_{1}e_1 + f_{1uo}/c_1$$

$2(f_{21}/$ Number of terms drastically increases! $4(f_{11}/$ $4((f_{11}))$ $3(f_{11}/$ ✓ Although it can be automated, calculations won't finish... (f_{03}/ε_2^3) $2((f_{11}/\varepsilon_1/\varepsilon_2) - (f_{10}/\varepsilon_1)(f_{01}/\varepsilon_2)) + ((f_{01}/\varepsilon_2) + (f_{02}/\varepsilon_2^2) - (f_{01}/\varepsilon_2)^2))^2$ Number of factorial moments $\kappa_4(\Delta N) =$ m : order of cumulant 3 eff. bins : M: # of efficiency bins 1188 terms $N_m^{\rm fm} = \sum_{r+M-1} C_r =_{m+M} C_m - 1$ r=1 $\sim M^m$ for large M 3-bins 1188 terms !!

P. Tribedy

More efficient formulas

✓ Derivation using factorial cumulants.
 ✓ For more details, see PRC.95.064912.

- ✓ Number of terms does not depend on efficiency bins.
- ✓ Calculation cost has been drastically suppressed.

Analytical calculation

- ✓ Assume two distributions which have the same cumulants (C_m+C_m=2C_m) with different efficiencies.
- ✓ Apply correction using the averaged efficiency and see the deviation.

$$\overline{\varepsilon} = (\varepsilon_{\rm A} + \varepsilon_{\rm B})/2$$
 $\Delta \varepsilon = \varepsilon_{\rm A} - \varepsilon_{\rm B}$

$$\Delta K_m = K_m - K_m^{(\text{ave})} = 2C_m - K_m^{(\text{ave})}$$

✓ The 1st order cumulant can be recovered by averaged efficiency.

$$K_1^{\text{ave}} = \langle N_A \rangle + \langle N_B \rangle = \frac{\langle n_A \rangle}{\overline{\varepsilon}} + \frac{\langle n_B \rangle}{\overline{\varepsilon}}$$
$$= \frac{\varepsilon_A C_1}{\overline{\varepsilon}} + \frac{\varepsilon_B C_1}{\overline{\varepsilon}} = 2C_1$$

- ✓ Higher the order of cumulant is, larger deviation appears.
- ✓ Interestingly, deviation becomes zero if both distributions are Poisson (C_m=C₁).

$$\begin{split} \Delta K_2 &= \frac{1}{2} \left(\frac{\Delta \varepsilon}{\overline{\varepsilon}} \right)^2 (C_2 - C_1), \\ \Delta K_3 &= \frac{3}{2} \left(\frac{\Delta \varepsilon}{\overline{\varepsilon}} \right)^2 (C_3 - 2C_2 + C_1), \\ \Delta K_4 &= \frac{1}{2} \left(\frac{\Delta \varepsilon}{\overline{\varepsilon}} \right)^2 (6C_4 - 18C_3 + 19C_2 - 7C_1) \\ &+ \frac{1}{8} \left(\frac{\Delta \varepsilon}{\overline{\varepsilon}} \right)^4 (C_4 - 6C_3 + 11C_2 - 6C_1), \end{split}$$

C_m+C_m=2C_m Cm EA EB

Efficiency bins

- ✓ Number of efficiency bins = 8 = (charge) x (pT) x (TPC sector)
- ✓ It will take more than 1 year to calculate C₆ as a function of centrality by using conventional correction formulas, while it has been reduced to less than 2 days by using new formulas.

Experimental correction

Experiment and Datasets

Detector Effect

- Efficiency correction
- Unfolding (NEW!)
- **Volume Fluctuation**
- Centrality Bin Width Correction
- Volume Fluctuation Correction

Results

Non-binomial efficiency

- Efficiency correction does not work in the case of non-binomial efficiency.
 - A. Bzdak et al : PRC.94.064907
- + Unfolding is necessary.
 - Reconstruct the distribution itself by using well-described detector response functions.

MC filter : binomial efficiency $\epsilon_p = 0.9$, $\epsilon_{pbar} = 0.7$

Critical shape

✓ Can we extract any unknown distribution??

T. Nonaka, Defence for Ph.D thesis, Feb. 9 28

Critical shape

✓ Two-peak structure in net-distribution has been recovered.

Toy model

Cumulants up to 6th order have been recovered.

Non-binomial distribution

Embedding datasets

Embedding samples, $\sqrt{s_{NN}} = 200$ GeV, 0-5% centrality, 1.0<pt<2.0 (GeV/c)

- ✓ Beta-binomial distribution is the best function to describe the experimental data.
- Results of unfolding with beta-binomial model will be included in systematic uncertainties.
- ✓ The recent embedding study indicates α ~15 with N_p~40 at √s_{NN} = 19 GeV.

Non-binomial detector effect

✓ Unfolding has been applied with beta-binomial model.
 ✓ Corrections are within statistical errors.

Summary for the experimental correction

- More efficient formulas for efficiency correction are derived, which enables us to apply efficiency correction on C₆ with reasonable CPU time.
- Unfolding approach is establised to correct nonbinomial detector effect.
- The "detector filter" has been determined by using the embedding simulations.
- Non-binomial detector effects on C_6/C_2 is negligible.

Physics correction

Experiment and Datasets Detector Effect

- Efficiency correction
- · Unfolding

Volume Fluctuation

- Centrality Bin Width Correction
- Volume Fluctuation Correction (NEW!)
 Results

Volume fluctuation?

✓ We have two kinds of "geometry" fluctuations.

- 1. Number of participant nucleons fluctuates event by event even at fixed impact parameter.
- 2. Number of produced particles fluctuates event by event even at fixed number of participant nucleons.

→ need to be removed

Centrality Bin Width Correction (CBWC)

- Calculate cumulants in each multiplicity bin, and average them in one centrality.
- ✓ Strongly depend on the centrality resolution.

$$C_r = \sum_i \omega_i K_r^i,$$

$$\omega_i = \frac{n_i}{\sum_i n_i},$$

*K*_{*i*}^{*j*} : r-th order cumulant in i-th multiplicity bin *n*^{*i*} : # of events in i-th multiplicity bin

New method (VFC)

✓ Derived based on the assumption of independent particle production from source of N_{part}.

 Volume fluctuations can be completely eliminated with some model inputs.

Up to 6th order

✓ By using cumulant expansion techinique, correction formulas up tp 6th order cumulant has been derived.

$$\begin{array}{lll} \mbox{Measured} & \mbox{True} & \mbox{Additional terms appears from the event by} \\ \mbox{event participant fluctuation} \\ \hline \kappa_5(\Delta N) = & \langle N_W \rangle \kappa_5(\Delta n) + \left[5\kappa_4(\Delta n)\kappa_1(\Delta n) + 10\kappa_3(\Delta n)\kappa_2(\Delta n) \right] \kappa_2(N_W) \\ & + \left[10\kappa_3(\Delta n)\kappa_1^2(\Delta n) + 15\kappa_2^2(\Delta n)\kappa_1(\Delta n) \right] \kappa_3(N_W) \\ & + 10\kappa_2(\Delta n)\kappa_1^3(\Delta n)\kappa_4(N_W) + \kappa_1^5(\Delta n)\kappa_5(N_W) \\ \hline \kappa_6(\Delta N) = & \langle N_W \rangle \kappa_6(\Delta n) + \left[6\kappa_5(\Delta n)\kappa_1(\Delta n) + 15\kappa_4(\Delta n)\kappa_2(\Delta n) + 10\kappa_3^2(\Delta n) \right] \kappa_2(N_W) \\ & + \left[15\kappa_4(\Delta n)\kappa_1^2(\Delta n) + 60\kappa_3(\Delta n)\kappa_2(\Delta n)\kappa_1(\Delta n) + 15\kappa_2^2(\Delta n)\kappa_1^2(\Delta n) \right] \kappa_3(N_W) \\ & + \left[20\kappa_3(\Delta n)\kappa_1^3(\Delta n) + 45\kappa_2^2(\Delta n)\kappa_1^2(\Delta n) \right] \kappa_4(N_W) \\ & + 15\kappa_2(\Delta n)\kappa_1^4(\Delta n)\kappa_5(N_W) + \kappa_1^6(\Delta n)\kappa_6(N_W) \\ \end{array} \right)$$

Toy model (Glauber + two-component model)

- ✓ Generate p and pbar from Npart according to the Poisson distribution.
- ✓ Cumulants from each source are independent.

✓ For centrality definition, charged particles are generated from source.

 True cumulants can be expressed by superposition of cumulants from each N_{part}.

$$\kappa_m(\Delta N) = \langle N_{part} \rangle \kappa_m(\Delta n)$$

Two component model and NBD fluctuations.

$$N_{ch} = n_{pp} \left[\frac{1-x}{2} N_{part} + x N_{coll} \right]$$
$$P_{n_{pp},k}(m) = \frac{\Gamma(m+K)}{\Gamma(m+1)\Gamma(k)} \frac{(n_{pp}/k)^m}{(n_{pp}/k+1)^{m+k}}$$

Effect of volume fluctuation

Net-p distributions are modified by volume fluctuations.

Effect of volume fluctuation

✦ Effect of volume fluctuation on C₆ is much larger than C₄.

"True" cumulants in UrQMD model

- Centrality is determined by using pions and kaons as is done in the expreiment.
- ✓ True cumulants can be defined by using the event by event N_{part} given by UrQMD.
- ✓ Calculate cumulants at each N_{part}, then averaged them in one centrality.

Comparison with "true" fluctuation in UrQMD model

- ✓ Both methods don't reproduce the true cumulants.
- CBWC results are systematically and qualitatively closer to true cumulants than VFC.
 - IPP model would be broken in UrQMD.
 - "True" fluctuation is partly killed by CBWC.

Summary for the physics correction

- Correction formulas up to 6th order cumulant are derived.
- Effect of volume fluctuation on C₆ is estimated with the model, which is much larger than C₄ and cannot be eliminated by CBWC.
- UrQMD model has been analyzed to compare CBWC and VFC to true cumulants.
- Both CBWC and VFC will be applied to C_6/C_2 .

Systematic study

variable	default	cut	details
lnσ _p l	<2.0	<2.5	worsen purity
mass ²	0.6 <m²<1.2< th=""><th>0.7<m²<1.3 0.8<m²<1.4< th=""><th>decreas kaon contamination</th></m²<1.4<></m²<1.3 </th></m²<1.2<>	0.7 <m²<1.3 0.8<m²<1.4< th=""><th>decreas kaon contamination</th></m²<1.4<></m²<1.3 	decreas kaon contamination
nHitsFit	>20	>15	increases the fraction of track splitting
DCA	<1.0	<1.5	increases secondory protons
efficiency	(ε _{lowpt} ,εhighpt)	$(1.05 \approx_{lowpt}, 1.05 \approx_{highpt})$ $(0.95 \approx_{lowpt}, 0.95 \approx_{highpt})$ $(1.05 \approx_{lowpt}, 0.95 \approx_{highpt})$ $(0.95 \approx_{lowpt}, 1.05 \approx_{highpt})$	
Pileup rejection (nTofMatch = a*Refmult + b)	(a,b) = (0.5,-13)	(0.3,-13)	includes some pileup events

Experiment and Datasets Detector Effect

- Efficiency correction
- · Unfolding
- **Volume Fluctuation**
- · Centrality Bin Width Correction
- Volume Fluctuation Correction

Results

Up to 4th order fluctuation

✓ Large difference in mid-central collisions

Beam energy dependence

✓ Non-monotonic behaviour in C₄/C₂ is robustness to the methods for volume fluctuation correction.

C_6/C_2 with the statistical baseline

- ✓ Results from run10 and run11 have been merged to reduce errors.
- ✓ Results are systematically suppressed compared to the Poisson baseline.

C_6/C_2 with the statistical baseline

Binomial distributions are compared as statistical baseline by using the width as well as mean parameter.

$$\begin{array}{ll} C_n^{\mathrm{net-p}} = C_n^{\mathrm{p}} + C_n^{\mathrm{pbar}} & \mu : \text{measured m} \\ C_2^x = \mu_x \varepsilon_x \\ C_6^x = \mu_x \varepsilon_x [120\varepsilon_x^4 - 240\varepsilon_x^3 + 150\varepsilon_x^2 - 30\varepsilon_x + 1] & \varepsilon = \frac{\sigma^2}{\mu} : \mathrm{measured m} \end{array}$$

: measured mean $= \frac{\sigma^2}{\mu}$: measured scaled variance

✓ Results can be described well by the binomial distribution.

 $\sqrt{s_{NN}}$ = 200 GeV, Run10 + Run11, Eff. corr + CBWC

C_6/C_2 with UrQMD

- ✓ UrQMD data has been analyzed with ~40 M events.
- UrQMD shows smaller results compared to the Poisson baseline in peripheral collisions, which might be due to the global baryon number conservation.
- ✓ Experimental data are systematically smaller than UrQMD.

CBWC vs VFC

✓ Volume fluctuation correction has been also applied.
 ✓ Systematic uncertainties are not estimated yet.

CBWC vs VFC

 VFC has been applied to UrQMD data.
 Experimental data are systematically smaller than UrQMD as is seen in CBWC.

Signal of the phase transition?

Signal of the phase transition?

- ✓ VFC results show negative values except the most central collisions.
- ✓ Negative at peripheral collisions??
- ✓ Conclusions will depend on the correction methods on volume fluctuation.

300

200

Comparison with theoretical model

✓ The scenario of "T^{freeze}/T_{pc}>1" could be thown away.

	$T^{\rm freeze}/T_{pc} \simeq 1$	$T^{\rm freeze}/T_{pc} \le 0.9$
$\chi_4^{ m B}/\chi_2^{ m B}$	~ 0.5	≥ 1
$\chi_6^{ m B}/\chi_2^{ m B}$	< 0	≥ 1

Friman et al, Eur. Phys. J. C (2011) 71:1694

Comparison with lattice QCD

- The quantitative comparison can only be done with the lattice QCD.
- ✓ Large errors for both experiment and lattice.
- ✓ Further understanding of global baryon conservation effects, volume fluctuation effects, etc.. would be needed.

<u>Conclusions</u>

- More efficiency formulas for efficiency correction and unfolding methods have been developed.
- CBWC and VFC are compared with true cumulants in the UrQMD model. Both methods would not provide true answers even in the UrQMD. It is important to apply both methods.
- In 30-40% centrality, C₆/C₂ shows negative value with 1.5σ significance, which is consistent with the theoretical prediction, and could be possibly an experimental evidence of phase transition.

ご静聴ありがとうございました。

Unfolding with beta-binomial model

Comparison with theoretical model

✓ The scenario of " T^{freeze}/T_{pc} >1" could be thown away.

Friman et al, Eur. Phys. J. C (2011) 71:1694

Shape for C₆ ?

Figure C.1: A simple sketch to stack n boxes for the n-th order cumulant.

Net-proton distribution

Robustness to the efficiency dropping

Effects from pileup events

Results seemts robust to the pileup events, which would be due to the low fraction (less than 0.2%) with respect to the total events.

40

20

-20

0

0 💀 🖗

C₆/C₂

QCD phase diagram

✓ Ultimate goal is to elucidate the QCD phase structrue.

- ✓ There will be QGP phase and hadronic phase.
- ✓ Where is the phase transition line?
- What kind of phase transition?
- Critical end point?

Higher order fluctuations of conserved quantities can probe the QCD phase structure

Chemical Freeze-out: (GCE)

- Weak temperature dependence
- Centrality dependence $\mu_{B}!$
- Lattice prediction on CP around *μ_B* ~ *300* – 400 MeV

Kinetic Freeze-out:

- Central collisions => lower value of T_{fo} and larger collectivity β_T
- Stronger collectivity at higher energy, even for peripheral collisions

ALICE: B.Abelev et al., PRL109, 252301(12); PRC88, 044910(2013). STAR: J. Adams, et al., NPA757, 102(05); X.L. Zhu, NPA931, c1098(14); L. Kumar, NPA931, c1114(14)

N. Xu, WPCF2015

0.6

(b) Kinetic Freeze-out

Au+Au at RHIC

7.7 GeV

11.5 GeV

14.5 GeV

19.6 GeV

27 GeV

39 GeV

200 GeV

0.8

Published results in 2014

- ✓ It seems to be interesting around 20 GeV for net-proton results.
- ✓ Net-charge results are consistent with the baseline due to large

errors. \rightarrow A wide distribution gives large statistical errors.

Finite tracking efficiency is corrected.

Bootstrap

B. Efron, R. Tibshirani, An introduction to the bootstrap, Chapman & Hall (1993).
Bootstrap

 $\begin{array}{l} \mbox{Input: Poisson - Poisson = Skellam} \\ \mbox{const double } \mu_p[2] = \{ \ 5, \ 4 \ \}; \\ \mbox{const double } \mu_{pbar}[2] = \{ \ 3, \ 1 \ \}; \\ \mbox{const double } \epsilon_p[2] = \{ \ 0.8, \ 0.6 \ \}; \\ \mbox{const double } \epsilon_{pbar}[2] = \{ \ 0.7, \ 0.9 \ \}; \end{array}$

- ✓ Bootstrap (300 resampling) are performed with 50 independent trials.
- ✓ Efficiency correction in case of 2+2 phase space.
- ✓ Bootstrap works well for C_6 and C_6/C_2 .

Bootstrap application in unfolding

- Errors for each point has been calculated from 100 bootstrap samplings with one MC.
- 100 independent trials have been tested.
- Bootstrap works well.

74

Comparison with LQCD results

- ✓ μ B ~ 20 MeV ≠ 0 at $\sqrt{s_{NN}}$ = 200 GeV.
- ✓ Finite size effect, volume fluctuation and baryon number conservation will dilute the experimental results.

Efficiency correction with many efficiency bins

$\kappa_4(\Delta N) =$

$$\begin{split} \kappa_4(\Delta N) &= (((f_{10000}/\varepsilon_1 + f_{01000}/\varepsilon_2 + f_{00100}/\varepsilon_3) + 7(f_{20000}/\varepsilon_1^2 + f_{11000}/\varepsilon_1/\varepsilon_2 + f_{101000}/\varepsilon_1/\varepsilon_3 + f_{11000}/\varepsilon_1/\varepsilon_2 + f_{02000}/\varepsilon_3^2) + 6(f_{30000}/\varepsilon_3^2 + f_{21000}/\varepsilon_1^2/\varepsilon_2 + f_{20100}/\varepsilon_1^2/\varepsilon_3 + f_{01000}/\varepsilon_1/\varepsilon_2 + f_{12000}/\varepsilon_1^2/\varepsilon_3 + f_{11000}/\varepsilon_1/\varepsilon_2 + f_{12000}/\varepsilon_1^2/\varepsilon_3 + f_{11000}/\varepsilon_1/\varepsilon_2 + f_{12000}/\varepsilon_1^2/\varepsilon_3 + f_{11000}/\varepsilon_1/\varepsilon_2 + f_{12000}/\varepsilon_1^2/\varepsilon_3 + f_{1200}/\varepsilon_1^2/\varepsilon_3 + f_{1200}/\varepsilon_1^2/\varepsilon_3$$
 $\int_{201000} \langle \varepsilon_1^2 / \varepsilon_3 + f_{111000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 + f_{102000} / \varepsilon_1 / \varepsilon_3^2 + f_{111000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 + f_{021000} / \varepsilon_2^2 / \varepsilon_3 + f_{012000} / \varepsilon_2 / \varepsilon_3^2 + f_{102000} / \varepsilon_1 / \varepsilon_3^2 + f_{012000} / \varepsilon_1 / \varepsilon_3^2 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_2 / \varepsilon_3 + f_{012000} / \varepsilon_1 / \varepsilon_2 / \varepsilon_$ $\frac{1012000/21/23+7300000}{51/62} + \frac{1}{6210000} \varepsilon_1^{-1}/2310000/\varepsilon_1^{-1}/23+730000} \varepsilon_1^{-1}/23+730000} \varepsilon_1^{-1}/22+7220000} \varepsilon_1^{-1}/22+7220000} \varepsilon_1^{-1}/22+721000} \varepsilon_1^{-1}/22+72100$ $f_{202000}/\varepsilon_1^2/\varepsilon_3^2 + f_{211000}/\varepsilon_1^2/\varepsilon_2/\varepsilon_3 + f_{121000}/\varepsilon_1/\varepsilon_2^2/\varepsilon_3 + f_{112000}/\varepsilon_1/\varepsilon_2/\varepsilon_3^2 + f_{202000}/\varepsilon_1^2/\varepsilon_3^2 + f_{112000}/\varepsilon_1/\varepsilon_3^2 + f_{103000}/\varepsilon_1/\varepsilon_3^2 + f_{10300}/\varepsilon_1/\varepsilon_3^2 + f_{10300}/\varepsilon_1/\varepsilon_3^2 + f_{10300}/\varepsilon_1/\varepsilon_3^2 + f_{10300}/\varepsilon_1/\varepsilon_1/\varepsilon_3^2 + f_{1$ $f_{310000}/\varepsilon_1^3/\varepsilon_2 + f_{220000}/\varepsilon_1^2/\varepsilon_2^2 + f_{211000}/\varepsilon_1^2/\varepsilon_2/\varepsilon_3 + f_{220000}/\varepsilon_1^2/\varepsilon_2^2 + f_{130000}/\varepsilon_1/\varepsilon_2^3 + f_{121000}/\varepsilon_1/\varepsilon_2^2/\varepsilon_3 + f_{211000}/\varepsilon_1^2/\varepsilon_2/\varepsilon_3 + f_{211000}/\varepsilon_1^2/\varepsilon_2/\varepsilon_3 + f_{211000}/\varepsilon_1^2/\varepsilon_2/\varepsilon_3 + f_{211000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{2110}/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{2110}/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{2110}/\varepsilon_3 + f_{21100}/\varepsilon_2/\varepsilon_3 + f_{2110}/\varepsilon_2/\varepsilon_3 + f_{2110}/\varepsilon_3 + f_{2110}/\varepsilon_3 + f_{2110}/\varepsilon_3/\varepsilon_3 + f_{2110}/\varepsilon_3 + f_{2110}/\varepsilon_$ $f_{121000}/\varepsilon_1/\varepsilon_2^2/\varepsilon_3 + f_{112000}/\varepsilon_1/\varepsilon_2/\varepsilon_3^2 + f_{220000}/\varepsilon_1^2/\varepsilon_2^2 + f_{130000}/\varepsilon_1/\varepsilon_2^3 + f_{121000}/\varepsilon_1/\varepsilon_2^2/\varepsilon_3 + f_{130000}/\varepsilon_1/\varepsilon_2^3 + f_{040000}/\varepsilon_2^4/\varepsilon_2^2 + f_{130000}/\varepsilon_1/\varepsilon_2^3 + f_{121000}/\varepsilon_1/\varepsilon_2^3 + f_{121000}/\varepsilon_2^3 + f_{121000}/\varepsilon_$ $\begin{array}{l} f_{121000}[\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{12000}]\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{22000}]\varepsilon_1^{\varepsilon_1/\varepsilon_2} + f_{13000}]\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{12000}]\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{10000}]\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{10000}]\varepsilon_1/\varepsilon_2/\varepsilon$ $f_{111000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{201000}/\varepsilon_1^2/\varepsilon_3 + f_{111000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{102000}/\varepsilon_1/\varepsilon_3^2 + f_{210000}/\varepsilon_1^2/\varepsilon_2 + f_{120000}/\varepsilon_1/\varepsilon_2^2 + f_{111000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{102000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{10200}/\varepsilon_2/\varepsilon_2/\varepsilon_3 + f_{10200}/\varepsilon_2/\varepsilon_2/\varepsilon_2/\varepsilon_3 + f_{10200}/\varepsilon_2/\varepsilon_2/\varepsilon_3 + f$ $f_{120000}/\varepsilon_1/\varepsilon_2^2 + f_{030000}/\varepsilon_2^3 + f_{021000}/\varepsilon_2^2/\varepsilon_3 + f_{111000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{021000}/\varepsilon_2^2/\varepsilon_3 + f_{012000}/\varepsilon_2/\varepsilon_3^2 + f_{201000}/\varepsilon_1/\varepsilon_3 + f_{111000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{012000}/\varepsilon_2/\varepsilon_3 + f_{01200}/\varepsilon_2/\varepsilon_3 + f_{012000}/\varepsilon_2/$ $f_{102000}/\varepsilon_1/\varepsilon_3^2 + f_{111000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{021000}/\varepsilon_2^2/\varepsilon_3 + f_{012000}/\varepsilon_2/\varepsilon_3^2 + f_{102000}/\varepsilon_1/\varepsilon_3^2 + f_{012000}/\varepsilon_2/\varepsilon_3^2 + f_{003000}/\varepsilon_3)(f_{100000}/\varepsilon_1 + f_{012000}/\varepsilon_2/\varepsilon_3 + f_{012000}/\varepsilon_2/\varepsilon_3 + f_{012000}/\varepsilon_2/\varepsilon_3 + f_{012000}/\varepsilon_2/\varepsilon_3 + f_{012000}/\varepsilon_2/\varepsilon_3 + f_{012000}/\varepsilon_3)(f_{100000}/\varepsilon_1 + f_{012000}/\varepsilon_2/\varepsilon_3 + f_{012000}/\varepsilon_3)(f_{010000}/\varepsilon_3)$ $\frac{f_{010000}/\varepsilon_2 + f_{001000}/\varepsilon_3) + 6(f_{10000}/\varepsilon_1 + f_{01000}/\varepsilon_2 + f_{00100}/\varepsilon_3)^3 + 6(f_{20000}/\varepsilon_1^2 + f_{11000}/\varepsilon_1/\varepsilon_2 + f_{101000}/\varepsilon_1/\varepsilon_3 + f_{110000}/\varepsilon_1/\varepsilon_2 + f_{01000}/\varepsilon_1/\varepsilon_3 + f_{101000}/\varepsilon_1/\varepsilon_3 + f_{01000}/\varepsilon_1/\varepsilon_3 + f_{01000}/\varepsilon$ $\begin{array}{l} \int 2 \log(2\pi) \left(2 + \int 2 \log(2\pi) \left(2 + \int 2 \log(2\pi) \right) \right) \\ = \int 2 \log(2\pi) \left(2 + \int 2 \log(2\pi) \left(2 + \int 2 \log(2\pi) \right) \right) \\ = \int 2 \log(2\pi) \left(2 + \int 2 \log(2\pi) \left(2 + \int 2 \log(2\pi) \right) \right) \\ = \int 2 \log(2\pi) \left(2 + \int 2 \log(2\pi) \left(2 + \int 2 \log(2\pi) \left(2 + \int 2 \log(2\pi) \right) \right) \right) \\ = \int 2 \log(2\pi) \left(2 + \int 2 \log(2\pi) \right) \right) \right) \\ = \int 2 \log(2\pi) \left(2 + \log(2\pi) \left($ $f_{020001} / \varepsilon_2^2 / \varepsilon_6 + f_{011100} / \varepsilon_2 / \varepsilon_3 / \varepsilon_4 + f_{011010} / \varepsilon_2 / \varepsilon_3 / \varepsilon_5 + f_{011001} / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{101100} / \varepsilon_1 / \varepsilon_3 / \varepsilon_4 + f_{101001} / \varepsilon_1 / \varepsilon_3 / \varepsilon_5 + f_{101001} / \varepsilon_1 / \varepsilon_3 / \varepsilon_6 + f_{011001} / \varepsilon_1 / \varepsilon_6 + f_{011001} / \varepsilon_6 + f_{01001} / \varepsilon_6 + f_{01001} / \varepsilon_6 + f_{01001} / \varepsilon_6 + f_{01001} / \varepsilon_6 + f_{01001}$ $f_{011100}/\varepsilon_2/\varepsilon_3/\varepsilon_4 + f_{011010}/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{011001}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{002100}/\varepsilon_3^2/\varepsilon_4 + f_{002010}/\varepsilon_3^2/\varepsilon_5 + f_{002001}/\varepsilon_3^2/\varepsilon_6) - 3(f_{200000}/\varepsilon_1^2 + f_{20000}/\varepsilon_3^2/\varepsilon_5) + f_{200000}/\varepsilon_3^2/\varepsilon_6) - 3(f_{200000}/\varepsilon_3^2/\varepsilon_6) + f_{200000}/\varepsilon_3^2/\varepsilon_6) + f_{200000}/\varepsilon_3^2/\varepsilon_6 + f_{200000}/\varepsilon_3^2/\varepsilon_6) + f_{200000}/\varepsilon_6) + f_{2000000}/\varepsilon_6) + f_{$ $f_{120010} / \varepsilon_1 / \varepsilon_2^2 / \varepsilon_5 + f_{120001} / \varepsilon_1 / \varepsilon_2^2 / \varepsilon_6 + f_{111100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_4 + f_{111001} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_5 + f_{111001} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1^2 / \varepsilon_3 / \varepsilon_4 + f_{111001} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1^2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_1 / \varepsilon_2 / \varepsilon_3 / \varepsilon_6 + f_{201100} / \varepsilon_2 / \varepsilon_6 + f_{20100} / \varepsilon_6 + f_$ $f_{201010}/\varepsilon_1^2/\varepsilon_3/\varepsilon_5 + f_{201001}/\varepsilon_1^2/\varepsilon_3/\varepsilon_6 + f_{111100}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_4 + f_{111010}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{111001}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{102100}/\varepsilon_1/\varepsilon_3^2/\varepsilon_4 + f_{11100}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{111001}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{102100}/\varepsilon_1/\varepsilon_3^2/\varepsilon_4 + f_{111010}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{111001}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{102100}/\varepsilon_1/\varepsilon_3^2/\varepsilon_4 + f_{111010}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{111001}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{102100}/\varepsilon_1/\varepsilon_3^2/\varepsilon_4 + f_{111010}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{102100}/\varepsilon_1/\varepsilon_3^2/\varepsilon_4 + f_{111010}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{102100}/\varepsilon_1/\varepsilon_3^2/\varepsilon_4 + f_{111010}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{102100}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{102100}/\varepsilon_1/\varepsilon_6 + f_{102100}/\varepsilon_1/\varepsilon_6 + f_{10210}/\varepsilon_6 + f_{10210}/\varepsilon_6 + f_{102100}/\varepsilon_6 + f_{10210}/\varepsilon_6 + f_{102100}/\varepsilon_6 + f_{10210}/\varepsilon_6 + f_{10$ $f_{102010}/\varepsilon_1/\varepsilon_3^2/\varepsilon_5 + f_{102001}/\varepsilon_1/\varepsilon_3^2/\varepsilon_6 + f_{210100}/\varepsilon_1^2/\varepsilon_2/\varepsilon_4 + f_{210010}/\varepsilon_1^2/\varepsilon_2/\varepsilon_5 + f_{210001}/\varepsilon_1^2/\varepsilon_2/\varepsilon_6 + f_{120100}/\varepsilon_1/\varepsilon_2^2/\varepsilon_4 + f_{120100}/\varepsilon_1/\varepsilon_2^2/\varepsilon_5 + f_{120100}/\varepsilon_1/\varepsilon_2^2/\varepsilon_6 + f_{120100}/\varepsilon_1/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon_2^2/\varepsilon$ $f_{120001}/\varepsilon_1/\varepsilon_2^2/\varepsilon_6 + f_{111100}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_4 + f_{11100}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{111001}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{12010}/\varepsilon_1/\varepsilon_2^2/\varepsilon_4 + f_{120010}/\varepsilon_1/\varepsilon_2^2/\varepsilon_5 + f_{111001}/\varepsilon_1/\varepsilon_2/\varepsilon_5 + f_{11001}/\varepsilon_1/\varepsilon_2/\varepsilon_5 + f_{1001}/\varepsilon_1/\varepsilon_2/\varepsilon_5 + f_{1001}/\varepsilon_1/\varepsilon_5 + f_{1001}/\varepsilon_5 + f_{1001$ $f_{012100}/\varepsilon_2/\varepsilon_3^2/\varepsilon_4 + f_{012010}/\varepsilon_2/\varepsilon_3^2/\varepsilon_5 + f_{012001}/\varepsilon_2/\varepsilon_3^2/\varepsilon_6 + f_{201100}/\varepsilon_1^2/\varepsilon_3/\varepsilon_4 + f_{201010}/\varepsilon_1^2/\varepsilon_3/\varepsilon_5 + f_{201001}/\varepsilon_1^2/\varepsilon_3/\varepsilon_6 + f_{111100}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{111100}/\varepsilon_1/\varepsilon_2/\varepsilon_2/\varepsilon_6 + f_{1110}/\varepsilon_2/\varepsilon_2/\varepsilon_2/\varepsilon_2/\varepsilon_6 + f_{110}/\varepsilon_2/\varepsilon_2/\varepsilon_2/\varepsilon_2/$ $f_{111010}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{11100}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{102100}/\varepsilon_1/\varepsilon_3^2/\varepsilon_4 + f_{102010}/\varepsilon_1/\varepsilon_3^2/\varepsilon_5 + f_{102001}/\varepsilon_1/\varepsilon_3^2/\varepsilon_6 + f_{111100}/\varepsilon_1/\varepsilon_2/\varepsilon_3/\varepsilon_4 + f_{102100}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{10210}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{10210}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{10210}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{10210}/\varepsilon_1/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{10210}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{10210}/\varepsilon_1/\varepsilon_1/\varepsilon_3/\varepsilon_6 +$ $f_{012010}/\varepsilon_2/\varepsilon_3^2/\varepsilon_5 + f_{012001}/\varepsilon_2/\varepsilon_3^2/\varepsilon_6 + f_{102100}/\varepsilon_1/\varepsilon_3^2/\varepsilon_4 + f_{102010}/\varepsilon_1/\varepsilon_3^2/\varepsilon_5 + f_{102001}/\varepsilon_1/\varepsilon_3^2/\varepsilon_6 + f_{012100}/\varepsilon_2/\varepsilon_3^2/\varepsilon_4 + f_{012100}/\varepsilon_2/\varepsilon_3^2/\varepsilon_6 + f_{012100}/\varepsilon_6/\varepsilon_6 + f_{012100}/\varepsilon_6/\varepsilon_6/\varepsilon_6 + f_{012100}/\varepsilon_6/\varepsilon_6/\varepsilon_6 + f_{01$ $f_{012001}/\varepsilon_2/\varepsilon_3^2/\varepsilon_6 + f_{003100}/\varepsilon_3^3/\varepsilon_4 + f_{003010}/\varepsilon_3^3/\varepsilon_5 + f_{003010}/\varepsilon_3^3/\varepsilon_6) - (f_{300000}/\varepsilon_1^3 + f_{210000}/\varepsilon_1^2/\varepsilon_2 + f_{201000}/\varepsilon_1^2/\varepsilon_3 + f_{210000}/\varepsilon_1^2/\varepsilon_2 + f_{210000}/\varepsilon_2 + f_{210000}/\varepsilon_2 + f_{210000}/\varepsilon_2 + f_{210000}/\varepsilon_2 + f_{210000}/\varepsilon_2 + f_{2100000}/\varepsilon_2 + f_{2100000}/\varepsilon_2 + f_{2100000}/\varepsilon_2 + f_{210000}/\varepsilon_2 +$ $f_{120000}/\varepsilon_1/\varepsilon_2^2 + f_{111000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{201000}/\varepsilon_1^2/\varepsilon_3 + f_{111000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{102000}/\varepsilon_1/\varepsilon_3^2 + f_{210000}/\varepsilon_1^2/\varepsilon_2 + f_{120000}/\varepsilon_1/\varepsilon_2^2/\varepsilon_3 + f_{102000}/\varepsilon_1/\varepsilon_3^2 + f_{120000}/\varepsilon_1/\varepsilon_2^2/\varepsilon_3 + f_{11000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{102000}/\varepsilon_1/\varepsilon_3^2 + f_{10200}/\varepsilon_1/\varepsilon_3^2 + f_{10200$ $f_{111000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{12000}/\varepsilon_1/\varepsilon_2^2 + f_{03000}/\varepsilon_2^3 + f_{02100}/\varepsilon_2^2/\varepsilon_3 + f_{111000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{02100}/\varepsilon_2^2/\varepsilon_3 + f_{012000}/\varepsilon_2/\varepsilon_3^2 + f_{02100}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{02100}/\varepsilon_2/\varepsilon_3 + f_{021000}/\varepsilon_2/\varepsilon_3 + f_{0$ $f_{111000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{102000}/\varepsilon_1/\varepsilon_3^2 + f_{111000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{021000}/\varepsilon_2^2/\varepsilon_3 + f_{012000}/\varepsilon_2/\varepsilon_3^2 + f_{102000}/\varepsilon_1/\varepsilon_3^2 + f_{012000}/\varepsilon_2/\varepsilon_3^2 + f_{01200}/\varepsilon_2/\varepsilon_3^2 + f_{01200}/\varepsilon_2/\varepsilon_3^2 + f_{01200}/\varepsilon_2/\varepsilon_3^2 + f_{01200}/\varepsilon_2/\varepsilon_3^2 + f_{01200}/\varepsilon_2/\varepsilon_3^2 + f_{01200}/\varepsilon_2/\varepsilon_3^2 + f_{012000}/\varepsilon_2/\varepsilon_3^2 + f_{012000}/\varepsilon_2/\varepsilon_3^2 + f_{012000}/\varepsilon_2/\varepsilon_3^2 + f_{01200}/\varepsilon_2/\varepsilon_3^2 + f_{012$ $f_{000000}/\varepsilon_3^3)(f_{000100}/\varepsilon_4 + f_{000010}/\varepsilon_5 + f_{000001}/\varepsilon_6) - 3(f_{100100}/\varepsilon_1/\varepsilon_4 + f_{100010}/\varepsilon_1/\varepsilon_5 + f_{100001}/\varepsilon_1/\varepsilon_6 + f_{010100}/\varepsilon_2/\varepsilon_4 + f_{010000}/\varepsilon_2/\varepsilon_4 + f_{010000}/\varepsilon_4 + f_{010000}/\varepsilon_2/\varepsilon_4 + f_$ $f_{010010}/\varepsilon_2/\varepsilon_5 + f_{010001}/\varepsilon_2/\varepsilon_6 + f_{001100}/\varepsilon_3/\varepsilon_4 + f_{001010}/\varepsilon_3/\varepsilon_5 + f_{001001}/\varepsilon_3/\varepsilon_6)(f_{100000}/\varepsilon_1 + f_{010000}/\varepsilon_2 + f_{001000}/\varepsilon_3) + f_{010000}/\varepsilon_3)$ $3(f_{10000}/\varepsilon_1+f_{01000}/\varepsilon_2+f_{00100}/\varepsilon_3)^2(f_{000100}/\varepsilon_4+f_{000010}/\varepsilon_5+f_{000001}/\varepsilon_6)-3(f_{200100}/\varepsilon_1^2/\varepsilon_4+f_{200010}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_6+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_1^2/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{200001}/\varepsilon_5+f_{2000001}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{2000000}/\varepsilon_5+f_{20000000}/\varepsilon_5+f_{2000000000}/\varepsilon_5+f_{20000$ $f_{110010}/\varepsilon_1/\varepsilon_2/\varepsilon_5 + f_{110001}/\varepsilon_1/\varepsilon_2/\varepsilon_6 + f_{020100}/\varepsilon_2^2/\varepsilon_4 + f_{020010}/\varepsilon_2^2/\varepsilon_5 + f_{020001}/\varepsilon_2^2/\varepsilon_6 + f_{011100}/\varepsilon_2/\varepsilon_3/\varepsilon_4 + f_{011010}/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{020010}/\varepsilon_2^2/\varepsilon_6 + f_{011100}/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{01010}/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{011010}/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{011010}/\varepsilon_2/\varepsilon_5 + f_{011010}/\varepsilon_5 + f_{011010}/\varepsilon_5/\varepsilon_5 + f_{011010}/\varepsilon_5 + f_{011010}/\varepsilon_5/\varepsilon_5 + f_{011010}/\varepsilon_5 + f_{01100}/\varepsilon_5/\varepsilon_5 + f_{01100}/\varepsilon_5 + f_{011010}/\varepsilon_5/\varepsilon_5 + f_{01100}/\varepsilon_5 + f_{01100}/\varepsilon_5 + f_{011010}/\varepsilon_5 + f_{01100}/\varepsilon_5 + f_{01100}/\varepsilon_5 + f_{01100}/\varepsilon_5 + f_{0100}/\varepsilon_5 + f_{0100}/\varepsilon_5 + f_{0100}/\varepsilon_5 + f_{0100}/\varepsilon_5 + f_{0100}/\varepsilon_5 + f_{0100}/\varepsilon_5 + f$ $f_{011001}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{101100}/\varepsilon_1/\varepsilon_3/\varepsilon_4 + f_{10100}/\varepsilon_1/\varepsilon_3/\varepsilon_5 + f_{101001}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{011100}/\varepsilon_2/\varepsilon_3/\varepsilon_4 + f_{011000}/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{011001}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{01001}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{01001}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{01001}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{01001}/\varepsilon_2/\varepsilon_6 + f_{0100}/\varepsilon_2/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{01001}/\varepsilon_2/\varepsilon_6 + f_{01000}/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{01000}/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{01000}/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{01000}/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{01000}/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{0100}/\varepsilon_6 +$ $\frac{f_{002100}/\varepsilon_3^2/\varepsilon_4 + f_{012010}/\varepsilon_3^2/\varepsilon_5 + f_{02000}/\varepsilon_3^2/\varepsilon_6)(f_{100000}/\varepsilon_1 + f_{010000}/\varepsilon_2 + f_{001000}/\varepsilon_3) + 3(f_{200000}/\varepsilon_1^2 + f_{110000}/\varepsilon_1/\varepsilon_2 + f_{101000}/\varepsilon_1/\varepsilon_2 + f_{101000}/\varepsilon_1/\varepsilon_2 + f_{011000}/\varepsilon_1/\varepsilon_2 + f_{011000}/\varepsilon_1/\varepsilon_1 + f_{011000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{011000}/\varepsilon_1/\varepsilon_2/\varepsilon_3 + f_{011000}/\varepsilon_2/\varepsilon_3 + f_{01100}/\varepsilon_2/\varepsilon_3 + f_{011000}/\varepsilon_2/\varepsilon_3 + f_{011000}/\varepsilon_2/\varepsilon_3 + f_{011000}/\varepsilon_2/\varepsilon_3 + f_{011000}/\varepsilon_2/\varepsilon_3 + f_{011000}/\varepsilon_2/\varepsilon_3 + f_{01100}/\varepsilon_2/\varepsilon_3 + f_{01100}/\varepsilon_2/\varepsilon_3 + f_{01100}/\varepsilon_2/\varepsilon_3 + f_{01100}/\varepsilon_2/\varepsilon_3 + f_{01100}/\varepsilon_2/\varepsilon_3 + f_{01100}/\varepsilon_2/\varepsilon$ $f_{010000}/\varepsilon_2 + f_{00100}/\varepsilon_3)(f_{000100}/\varepsilon_4 + f_{000010}/\varepsilon_5 + f_{000001}/\varepsilon_6) + 3(f_{100100}/\varepsilon_1/\varepsilon_4 + f_{100010}/\varepsilon_1/\varepsilon_5 + f_{100001}/\varepsilon_1/\varepsilon_6 + f_{010100}/\varepsilon_2/\varepsilon_4 + f_{010001}/\varepsilon_5)) + 3(f_{100100}/\varepsilon_1/\varepsilon_5 + f_{010001}/\varepsilon_5) + 3(f_{100100}/\varepsilon_1/\varepsilon_5 + f_{010010}/\varepsilon_5)) + 3(f_{100100}/\varepsilon_1/\varepsilon_5 + f_{010010}/\varepsilon_5)) + 3(f_{100100}/\varepsilon_5) + 3(f_{100100}/\varepsilon_5) + 3(f_{100100}/\varepsilon_5)) + 3(f_{100100}/\varepsilon_5) + 3(f_{100100}/\varepsilon_5) + 3(f_{100100}/\varepsilon_5)) + 3(f_{100100}/\varepsilon_5) + 3(f_{10010}/\varepsilon_5) + 3(f_{10010}/\varepsilon_5$ $\begin{array}{l} f_{010010}/\varepsilon_2/\varepsilon_5 + f_{010001}/\varepsilon_2/\varepsilon_6 + f_{001100}/\varepsilon_3/\varepsilon_4 + f_{001010}/\varepsilon_3/\varepsilon_5 + f_{001001}/\varepsilon_3/\varepsilon_6)(f_{100000}/\varepsilon_1 + f_{010000}/\varepsilon_2 + f_{001000}/\varepsilon_3)^2 - 3(f_{100000}/\varepsilon_1 + f_{10000}/\varepsilon_2 + f_{001000}/\varepsilon_3)^3(f_{000100}/\varepsilon_4 + f_{000010}/\varepsilon_5 + f_{00001}/\varepsilon_6)) + 6((f_{100100}/\varepsilon_1/\varepsilon_5 + f_{100010}/\varepsilon_1/\varepsilon_5 + f_{100010}/\varepsilon_1/\varepsilon_5 + f_{100010}/\varepsilon_1/\varepsilon_5 + f_{100010}/\varepsilon_1/\varepsilon_5 + f_{001001}/\varepsilon_3/\varepsilon_6) + (f_{100200}/\varepsilon_1/\varepsilon_2^2 + f_{100100}/\varepsilon_1/\varepsilon_2^2 + f_{001001}/\varepsilon_3/\varepsilon_6 + f_{001001}/\varepsilon_3/\varepsilon_6) + (f_{100200}/\varepsilon_1/\varepsilon_2^2 + f_{100100}/\varepsilon_1/\varepsilon_2^2 + f_{001001}/\varepsilon_2/\varepsilon_6 + f_{001001}/\varepsilon_3/\varepsilon_6 + f_{001001}/\varepsilon_3/\varepsilon_6) + (f_{100200}/\varepsilon_1/\varepsilon_2^2 + f_{001001}/\varepsilon_1/\varepsilon_4 + f_{001001}/\varepsilon_3/\varepsilon_6) + (f_{100200}/\varepsilon_1/\varepsilon_2^2 + f_{001001}/\varepsilon_1/\varepsilon_4 + f_{001001}/\varepsilon_3/\varepsilon_6) + (f_{100200}/\varepsilon_1/\varepsilon_2^2 + f_{001001}/\varepsilon_1/\varepsilon_4 + f_{001001}/\varepsilon_3/\varepsilon_6) + (f_{100200}/\varepsilon_1/\varepsilon_4^2 + f_{100101}/\varepsilon_1/\varepsilon_4 + f_{001001}/\varepsilon_3/\varepsilon_6) + (f_{100200}/\varepsilon_1/\varepsilon_4^2 + f_{001001}/\varepsilon_1/\varepsilon_4 + f_{001001}/\varepsilon_3/\varepsilon_6) + (f_{100200}/\varepsilon_1/\varepsilon_4^2 + f_{001001}/\varepsilon_1/\varepsilon_4 + f_{001001}/\varepsilon_3/\varepsilon_6) + (f_{100200}/\varepsilon_1/\varepsilon_4^2 + f_{001001}/\varepsilon_4/\varepsilon_6 + f_{001001}/\varepsilon_3/\varepsilon_6) + (f_{100200}/\varepsilon_1/\varepsilon_4^2 + f_{001001}/\varepsilon_4/\varepsilon_6) + (f_{100200}/\varepsilon_4/\varepsilon_6) + (f_{100200}/\varepsilon_4 + f_{00100}/\varepsilon_4/\varepsilon_6) + (f_{100200}/\varepsilon_4/\varepsilon_6) + (f_{100200}/\varepsilon_6/\varepsilon_6) + (f_{100200}/\varepsilon_6/\varepsilon_6) + (f_{100200}/\varepsilon_6/\varepsilon_6) + (f_{100200}/\varepsilon_6/\varepsilon_6) + (f_{100200}/\varepsilon_6/\varepsilon_6) + (f_{100200}/\varepsilon_6/$

 $\begin{array}{l} f_{010200}/\varepsilon_2/\varepsilon_4^2 + f_{010110}/\varepsilon_2/\varepsilon_4/\varepsilon_5 + f_{010101}/\varepsilon_2/\varepsilon_4/\varepsilon_6 + f_{010110}/\varepsilon_2/\varepsilon_4/\varepsilon_5 + f_{010000}/\varepsilon_2/\varepsilon_4^2 + f_{010011}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{010101}/\varepsilon_2/\varepsilon_4/\varepsilon_6 + f_{01010}/\varepsilon_2/\varepsilon_4/\varepsilon_6 + f_{010101}/\varepsilon_2/\varepsilon_4/\varepsilon_6 + f_{01010}/\varepsilon_2/\varepsilon_4/\varepsilon_6 + f_{01010}/\varepsilon_2/\varepsilon_4/\varepsilon_6 + f_{01010}/\varepsilon_2/\varepsilon_4/\varepsilon_6 + f_{01001}/\varepsilon_2/\varepsilon_4/\varepsilon_6 + f_{010001}/\varepsilon_2/\varepsilon_4/\varepsilon_6$ $f_{001011}/\varepsilon_3/\varepsilon_5/\varepsilon_6 + f_{001101}/\varepsilon_3/\varepsilon_4/\varepsilon_6 + f_{001011}/\varepsilon_3/\varepsilon_5/\varepsilon_6 + f_{001002}/\varepsilon_3/\varepsilon_6^2) - 2(f_{100100}/\varepsilon_1/\varepsilon_4 + f_{100010}/\varepsilon_1/\varepsilon_5 + f_{100001}/\varepsilon_1/\varepsilon_6 + f_{001001}/\varepsilon_1/\varepsilon_6 + f_{001001}/\varepsilon_0/\varepsilon_6 + f_{001001}/$ $f_{010100}/\varepsilon_2/\varepsilon_4 + f_{010010}/\varepsilon_2/\varepsilon_5 + f_{010001}/\varepsilon_2/\varepsilon_6 + f_{001100}/\varepsilon_3/\varepsilon_4 + f_{001010}/\varepsilon_3/\varepsilon_5 + f_{001001}/\varepsilon_3/\varepsilon_6)(f_{000100}/\varepsilon_4 + f_{000010}/\varepsilon_5 + f_{000100}/\varepsilon_5)/\varepsilon_6)$ $f_{000001}/\varepsilon_{6}) + (f_{100000}/\varepsilon_{1} + f_{010000}/\varepsilon_{2} + f_{001000}/\varepsilon_{3})(f_{000100}/\varepsilon_{4} + f_{000010}/\varepsilon_{5} + f_{000001}/\varepsilon_{6})^{2} + (f_{200100}/\varepsilon_{1}^{2}/\varepsilon_{4} + f_{200010}/\varepsilon_{1}^{2}/\varepsilon_{5} + f_{00000}/\varepsilon_{1}/\varepsilon_{6})^{2} + (f_{100000}/\varepsilon_{1}/\varepsilon_{1}/\varepsilon_{6})^{2} + (f_{100000}/\varepsilon_{1}/\varepsilon_{6})^{2} + (f_{10000}/\varepsilon_{1}/\varepsilon_{6})^{2} + (f_{10000}/\varepsilon_{1}/\varepsilon_{6})^{2} + (f_{10000}/\varepsilon_{6})^{2} + (f_{1000}/\varepsilon_{6})^{2} + (f_{1000}/\varepsilon_{6})^{2} + (f_{1000}/\varepsilon_{6})^{2} + (f_{1000}/\varepsilon_{6})^{2} + (f_{1000}/\varepsilon_{6})^{$ $f_{200001}/\varepsilon_1^2/\varepsilon_6 + f_{110100}/\varepsilon_1/\varepsilon_2/\varepsilon_4 + f_{110010}/\varepsilon_1/\varepsilon_2/\varepsilon_5 + f_{110001}/\varepsilon_1/\varepsilon_2/\varepsilon_6 + f_{101100}/\varepsilon_1/\varepsilon_3/\varepsilon_4 + f_{101010}/\varepsilon_1/\varepsilon_3/\varepsilon_5 + f_{101001}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{101100}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{10010}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{101100}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{101000}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{101000}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{101000}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{101000}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{101000}/\varepsilon_1/\varepsilon_3/\varepsilon_6$ $\frac{1}{1000} \left[\varepsilon_1/\varepsilon_2/\varepsilon_4 + \frac{1}{1000} (\varepsilon_1/\varepsilon_2/\varepsilon_5 + \frac{1}{1000}) (\varepsilon_1/\varepsilon_2/\varepsilon_5 + \frac{1}{1000}) (\varepsilon_1/\varepsilon_2/\varepsilon_5 + \frac{1}{1000}) (\varepsilon_1/\varepsilon_4/\varepsilon_5 + \frac{1}{1000}) (\varepsilon_1/\varepsilon$ $f_{200110}/\varepsilon_1^2/\varepsilon_4/\varepsilon_5 + f_{200020}/\varepsilon_1^2/\varepsilon_5^2 + f_{200011}/\varepsilon_1^2/\varepsilon_5/\varepsilon_6 + f_{200101}/\varepsilon_1^2/\varepsilon_4/\varepsilon_6 + f_{200011}/\varepsilon_1^2/\varepsilon_5/\varepsilon_6 + f_{200002}/\varepsilon_1^2/\varepsilon_6^2 + f_{110200}/\varepsilon_1/\varepsilon_2/\varepsilon_4^2 + f_{110200}/\varepsilon_1/\varepsilon_2/\varepsilon_4^2 + f_{110200}/\varepsilon_1/\varepsilon_2/\varepsilon_4 + f_{110200}/\varepsilon_2/\varepsilon_4 + f_{110200}/\varepsilon_2/\varepsilon_4 + f_{11020}/\varepsilon_2/\varepsilon_4 + f_{110200}/\varepsilon_2/\varepsilon_4 + f_{11020}/\varepsilon_4 + f_{110200}/\varepsilon_2/\varepsilon_4 + f_{110200}/\varepsilon_2/\varepsilon_4 + f_{11020}/\varepsilon_2/\varepsilon_4 + f_{11020}/\varepsilon_4 + f_{11020}/\varepsilon_2/\varepsilon_4 + f_{110200}/\varepsilon_2/\varepsilon_4 + f_{11020}/\varepsilon_2/\varepsilon_4 + f_{11020}/\varepsilon_4 + f_{11020}/\varepsilon_2/\varepsilon_4 + f_{11020}/\varepsilon_2/\varepsilon_4 + f_{11020}/\varepsilon_2/\varepsilon_4 + f_{11020}/\varepsilon_2/\varepsilon_4 + f_{11020}/\varepsilon_4 + f_{1102$ $f_{110011}/\varepsilon_1/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{110002}/\varepsilon_1/\varepsilon_2/\varepsilon_6^2 + f_{101200}/\varepsilon_1/\varepsilon_3/\varepsilon_4^2 + f_{101110}/\varepsilon_1/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{101101}/\varepsilon_1/\varepsilon_3/\varepsilon_4/\varepsilon_6 + f_{101110}/\varepsilon_1/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{101101}/\varepsilon_1/\varepsilon_3/\varepsilon_4/\varepsilon_6 + f_{10110}/\varepsilon_1/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{101101}/\varepsilon_1/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{10110}/\varepsilon_5/\varepsilon_5 + f_{101101}/\varepsilon_5/\varepsilon_5/\varepsilon_5 + f_{101100}/\varepsilon_5/\varepsilon_5 + f_{101100}/\varepsilon_5/\varepsilon_5 + f_{101100}/\varepsilon_5/\varepsilon_5 + f_{101100}/\varepsilon_5/\varepsilon_5 + f_{101100}/\varepsilon_5/\varepsilon_5 + f_{101100}/\varepsilon_5/\varepsilon_5 + f_{10100}/\varepsilon_5/\varepsilon_5 + f_{10100}/\varepsilon_5 + f_{10100}/\varepsilon_5/\varepsilon_5 + f_{10100}/\varepsilon_5 + f_{10100}/\varepsilon_5 + f_{10100}/\varepsilon_5 + f_{10100}/\varepsilon_5 + f_{10100}/\varepsilon_5 + f_{10100}/\varepsilon_5 + f_{101000}/\varepsilon_5 + f_{10100}/\varepsilon_5 + f_{1010$ $\begin{array}{l} f_{11010}/\varepsilon_1/\varepsilon_2/\varepsilon_4/\varepsilon_5 + f_{11010}/\varepsilon_1/\varepsilon_2/\varepsilon_4/\varepsilon_6 + f_{11010}/\varepsilon_1/\varepsilon_2/\varepsilon_4/\varepsilon_5 + f_{11020}/\varepsilon_1/\varepsilon_2/\varepsilon_5^2 + f_{11020}/\varepsilon_1/\varepsilon_2/\varepsilon_5 + f_{11020}/\varepsilon_1/\varepsilon_2/\varepsilon_5 + f_{11020}/\varepsilon_1/\varepsilon_2/\varepsilon_5 + f_{11020}/\varepsilon_2/\varepsilon_5 + f_{11101}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11020}/\varepsilon_2/\varepsilon_5 + f_{11110}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11020}/\varepsilon_2/\varepsilon_5 + f_{11120}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11101}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11020}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11100}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11100}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11100}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11100}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11100}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11100}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11110}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11110}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11120}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{111110}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11110}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{11110}/\varepsilon$ $f_{101200}/\varepsilon_1/\varepsilon_3/\varepsilon_4^2 + f_{101110}/\varepsilon_1/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{101101}/\varepsilon_1/\varepsilon_3/\varepsilon_4/\varepsilon_6 + f_{101110}/\varepsilon_1/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{101020}/\varepsilon_1/\varepsilon_3/\varepsilon_5^2 + f_{101011}/\varepsilon_1/\varepsilon_3/\varepsilon_5/\varepsilon_6 + f_{101101}/\varepsilon_1/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{101101}/\varepsilon_1/\varepsilon_3/\varepsilon_5/\varepsilon_5 + f_{101101}/\varepsilon_1/\varepsilon_3/\varepsilon_5/\varepsilon_5 + f_{101101}/\varepsilon_1/\varepsilon_3/\varepsilon_5/\varepsilon_5 + f_{101101}/\varepsilon_5/\varepsilon_5 + f_{10110}/\varepsilon_5/\varepsilon_5 + f_{10110}/\varepsilon_5 + f_{10110}/\varepsilon_5 + f_{10110}/\varepsilon_5 + f_{10110}/\varepsilon_5 + f_{10110}/\varepsilon_5 + f$ $f_{101101}/\varepsilon_1/\varepsilon_3/\varepsilon_4/\varepsilon_6 + f_{101011}/\varepsilon_1/\varepsilon_3/\varepsilon_5/\varepsilon_6 + f_{101002}/\varepsilon_1/\varepsilon_3/\varepsilon_6^2 + f_{011200}/\varepsilon_2/\varepsilon_3/\varepsilon_4^2 + f_{011110}/\varepsilon_2/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{011101}/\varepsilon_2/\varepsilon_3/\varepsilon_4/\varepsilon_6 + f_{01101}/\varepsilon_2/\varepsilon_3/\varepsilon_4/\varepsilon_6 + f_{01100}/\varepsilon_2/\varepsilon_3/\varepsilon_4/\varepsilon_6 + f_{01100}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{0100}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{0100}/\varepsilon_2/\varepsilon_6 + f_{0100}/\varepsilon_6 + f_{010$ $\int \lim_{z \to 1} |u_1|^{-1/-3} - |z_1|^{-4/-6} + \lim_{z \to 1} |u_2|^{-3/-6} + \lim_{z \to 1} |u_1|^{-2/-6/-6} + \lim_{z \to 1} |u_2|^{-2/-6/-6} + \lim_{z \to 1} |u_2|^{-2/-6/-6} + \lim_{z \to 1} |u_1|^{-2/-6/-6} + \lim_{z \to 1} |u_2|^{-2/-6/-6} + \lim$ $f_{020100}/\varepsilon_2^2/\varepsilon_4 + f_{020010}/\varepsilon_2^2/\varepsilon_5 + f_{020001}/\varepsilon_2^2/\varepsilon_6 + f_{011100}/\varepsilon_2/\varepsilon_3/\varepsilon_4 + f_{011010}/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{011001}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{101100}/\varepsilon_1/\varepsilon_3/\varepsilon_4 + f_{01001}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{01100}/\varepsilon_1/\varepsilon_3/\varepsilon_4 + f_{01001}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{01100}/\varepsilon_1/\varepsilon_3/\varepsilon_4 + f_{01001}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{01001}/\varepsilon_2/\varepsilon_6 + f_{01001}/\varepsilon_6 +$ $f_{10100}/\varepsilon_1/\varepsilon_3/\varepsilon_5 + f_{101001}/\varepsilon_1/\varepsilon_3/\varepsilon_6 + f_{011100}/\varepsilon_2/\varepsilon_3/\varepsilon_4 + f_{011010}/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{011001}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{002100}/\varepsilon_3^2/\varepsilon_4 + f_{002010}/\varepsilon_3^2/\varepsilon_5 + f_{01100}/\varepsilon_2/\varepsilon_3/\varepsilon_6 + f_{01100}/\varepsilon_2/\varepsilon_3/\varepsilon_5 + f_{01100}/\varepsilon_2/\varepsilon_5/\varepsilon_5 + f_{0100}/\varepsilon_2/\varepsilon_5/\varepsilon_5 + f_{0100}/\varepsilon_2/\varepsilon_5/\varepsilon_5 + f_{0100}/\varepsilon_5/\varepsilon_5 + f_{0100}/\varepsilon_5 + f_{0100}/\varepsilon_5/\varepsilon_5 + f_{0100}/\varepsilon_5 + f_{0100}/\varepsilon_5 + f_{0100}/\varepsilon_5/\varepsilon_5 + f_{0100}/\varepsilon_5 + f_{0100}/\varepsilon_5 + f_{0100}/\varepsilon_5/\varepsilon_5 + f_{0100}/\varepsilon$ $\sum_{i=1}^{2} |f_{00001}|^2_{2i}/|s_{0}| (f_{000100}|\varepsilon_{4} + f_{00010}|\varepsilon_{5} + f_{000001}/\varepsilon_{6}) + (f_{200001}/\varepsilon_{1}^{2} + f_{10000}/\varepsilon_{1}/\varepsilon_{2} + f_{101000}/\varepsilon_{1}/\varepsilon_{3} + f_{000100}/\varepsilon_{2}) \\ = \int_{1}^{2} |f_{011000}|\varepsilon_{2}/\varepsilon_{3} + f_{01000}/\varepsilon_{1}/\varepsilon_{3} + f_{01000}/\varepsilon_{2}/\varepsilon_{3} + f_{002000}/\varepsilon_{3}^{2})(f_{000100}/\varepsilon_{4} + f_{000010}/\varepsilon_{5} + f_{000001}/\varepsilon_{6})^{2} - 2(f_{100100}/\varepsilon_{1}/\varepsilon_{4} + f_{100000}/\varepsilon_{1}/\varepsilon_{5} + f_{000001}/\varepsilon_{1}/\varepsilon_{5} + f_{000100}/\varepsilon_{3}/\varepsilon_{5} + f_{000100}/\varepsilon_{3}/\varepsilon_{5} + f_{000100}/\varepsilon_{3}/\varepsilon_{5} + f_{000100}/\varepsilon_{3}/\varepsilon_{5}) \\ = \int_{1}^{2} |f_{00010}|^{2} |f_{000}|^{2} |f_{000}|^{2} |f_{000}|^{2} |f_{000}|^{2} |f_{000}|^{2} |f_{0000}|^{2} |f_{0000}|^{$ $\frac{110000}{10000} (\varepsilon_1 + f_{00000})(\varepsilon_1) - 2(f_{100000})(\varepsilon_1) (\varepsilon_2^2 + f_{100101})(\varepsilon_1) (\varepsilon_1 + \varepsilon_5 + f_{100101})(\varepsilon_1) (\varepsilon_4 + \varepsilon_5 + f_{100000})(\varepsilon_1) (\varepsilon_2^2 + f_{100001})(\varepsilon_1) (\varepsilon_5 + \varepsilon_5 + f_{100000})(\varepsilon_1) (\varepsilon_2^2 + \varepsilon_5 + \varepsilon_5 + \varepsilon_5 + \varepsilon_5 + \varepsilon_5))(\varepsilon_1) (\varepsilon_1) (\varepsilon_1) (\varepsilon_1) (\varepsilon_2^2 + \varepsilon_5 + \varepsilon_5))(\varepsilon_1) (\varepsilon_1) (\varepsilon_1) (\varepsilon_2^2 + \varepsilon_5 + \varepsilon_5))(\varepsilon_1) (\varepsilon_1) (\varepsilon_1) (\varepsilon_2^2 + \varepsilon_5 + \varepsilon_5))(\varepsilon_1) (\varepsilon_1) (\varepsilon_1) (\varepsilon_2^2 + \varepsilon_5))(\varepsilon_1) (\varepsilon_1) (\varepsilon_2^2 + \varepsilon_5) (\varepsilon_1) (\varepsilon_1) (\varepsilon_1) (\varepsilon_1) (\varepsilon_2^2 + \varepsilon_5))(\varepsilon_1) (\varepsilon_1) (\varepsilon_1) (\varepsilon_1) (\varepsilon_2^2 + \varepsilon_5))(\varepsilon_1) (\varepsilon_1) (\varepsilon_1)$ $\int 100011/\varepsilon_1/\varepsilon_1/\varepsilon_0 + \int 00111/\varepsilon_1/\varepsilon_1/\varepsilon_0 + \int 100011/\varepsilon_1/\varepsilon_1/\varepsilon_0 + \int 100002/\varepsilon_1/\varepsilon_0 + \int 010002/\varepsilon_1/\varepsilon_1 + \int 010110/\varepsilon_2/\varepsilon_1/\varepsilon_0 + \int 010002/\varepsilon_1/\varepsilon_0 + \int 010001/\varepsilon_1/\varepsilon_0 + \int 010002/\varepsilon_1/\varepsilon_0 + \int 010002/\varepsilon_0/\varepsilon_0 + \int 010002/\varepsilon_0/\varepsilon$ $\int 000002/\epsilon_3/\epsilon_0/(100000)/\epsilon_1 + f 010000/\epsilon_2 + f 001000/\epsilon_3) + 4(f 100100)/\epsilon_1/\epsilon_4 + f 100001/\epsilon_1/\epsilon_5 + f 100001/\epsilon_1/\epsilon_6 + f 010100/\epsilon_2/\epsilon_4 + f 010100/\epsilon_3/\epsilon_5 + f 00100/\epsilon_3/\epsilon_5 + f 00100/\epsilon_3/\epsilon_5 + f 00100/\epsilon_3/\epsilon_5 + f 00100/\epsilon_5 + f 00100/\epsilon_5 + f 00100/\epsilon_5 + f 00100/\epsilon_5 + f 00000/\epsilon_5 + f 00000/$ $f_{100010}/\varepsilon_{1}/\varepsilon_{5} + f_{100001}/\varepsilon_{1}/\varepsilon_{6} + f_{010100}/\varepsilon_{2}/\varepsilon_{4} + f_{010010}/\varepsilon_{2}/\varepsilon_{5} + f_{010001}/\varepsilon_{2}/\varepsilon_{6} + f_{001100}/\varepsilon_{3}/\varepsilon_{4} + f_{001010}/\varepsilon_{3}/\varepsilon_{5} + f_{001001}/\varepsilon_{3}/\varepsilon_{6} + f_{001000}/\varepsilon_{3}/\varepsilon_{6} + f_{00100}/\varepsilon_{3}/\varepsilon_{6} + f_{00100}/\varepsilon_{3}/\varepsilon_{6} + f_{00100}/\varepsilon_{3}/\varepsilon_{6} + f_{00100}/\varepsilon_{6} + f_{0000}/\varepsilon_{6} + f_{000}/\varepsilon_{6} + f_{00000}/\varepsilon_{6} + f_{0000}/\varepsilon_{6} + f_{000}/\varepsilon_{6} + f_{0000}/\varepsilon_{6} + f_{000}/\varepsilon_{6} + f_{000}/\varepsilon_{6} + f_{0000}/\varepsilon_{6} + f_{000}/\varepsilon_{6} + f_{000}/\varepsilon_{6}$ $\frac{1}{3}(f_{100200}/\varepsilon_1/\varepsilon_4^2 + f_{100110}/\varepsilon_1/\varepsilon_4/\varepsilon_5 + f_{100101}/\varepsilon_1/\varepsilon_4/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_4/\varepsilon_5 + f_{100020}/\varepsilon_1/\varepsilon_5^2 + f_{100011}/\varepsilon_1/\varepsilon_5/\varepsilon_6 + f_{100101}/\varepsilon_1/\varepsilon_4/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_4/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_4/\varepsilon_5 + f_{100110}/\varepsilon_1/\varepsilon_5/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_4/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_4/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_5/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_4/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_4/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_5/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_4/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_4/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_4/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_5/\varepsilon_6 + f_{100110}/\varepsilon_1/\varepsilon_4/\varepsilon_6 + f_{100110}/\varepsilon_1/$ $f_{100011}/\varepsilon_1/\varepsilon_5/\varepsilon_6 + f_{100002}/\varepsilon_1/\varepsilon_6^2 + f_{010200}/\varepsilon_2/\varepsilon_4^2 + f_{010110}/\varepsilon_2/\varepsilon_4/\varepsilon_5 + f_{010101}/\varepsilon_2/\varepsilon_4/\varepsilon_6 + f_{010110}/\varepsilon_2/\varepsilon_4/\varepsilon_5 + f_{010020}/\varepsilon_2/\varepsilon_5^2 + f_{010020}/\varepsilon_2/\varepsilon_5 + f_{010101}/\varepsilon_2/\varepsilon_4/\varepsilon_5 + f_{0100101}/\varepsilon_2/\varepsilon_4/\varepsilon_5 + f_{010010}/\varepsilon_2/\varepsilon_4/\varepsilon_5 + f_{010000}/\varepsilon_2/\varepsilon_4/\varepsilon_5 + f_{010000}/\varepsilon_2/\varepsilon_5 + f_{010000}/\varepsilon_5 + f_{01000}/\varepsilon_5 + f_{010000}/\varepsilon_5 + f_{01000}/\varepsilon$ $\frac{1}{1001}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + \frac{1}{10101}/\varepsilon_2/\varepsilon_4/\varepsilon_6 + \frac{1}{10001}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + \frac{1}{10002}/\varepsilon_2/\varepsilon_6^2 + \frac{1}{10002}/\varepsilon_3/\varepsilon_4^2 + \frac{1}{100100}/\varepsilon_3/\varepsilon_4/\varepsilon_5 + \frac{1}{100100}/\varepsilon_3/\varepsilon_4/\varepsilon_6 + \frac{1}{10000}/\varepsilon_3/\varepsilon_4/\varepsilon_6 + \frac{1}{10000}/\varepsilon_3/\varepsilon_6/\varepsilon_6 + \frac{1}{10000}/\varepsilon_3/\varepsilon_6/\varepsilon_6 + \frac{1}{10000}/\varepsilon_3/\varepsilon_6/\varepsilon_6 + \frac{1}{10000}/\varepsilon_6/\varepsilon_6 + \frac{1}{$ $\sum_{j=1,1,2} |\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{001020}/\varepsilon_3/\varepsilon_5^2 + f_{001011}/\varepsilon_3/\varepsilon_5/\varepsilon_6 + f_{001011}/\varepsilon_3/\varepsilon_4/\varepsilon_6 + f_{001011}/\varepsilon_3/\varepsilon_5/\varepsilon_6 + f_{001020}/\varepsilon_3/\varepsilon_6^2) + (f_{100300}/\varepsilon_1/\varepsilon_3^2 + f_{001020}/\varepsilon_3/\varepsilon_6) + (f_{100300}/\varepsilon_3/\varepsilon_5/\varepsilon_6 + f_{001020}/\varepsilon_3/\varepsilon_6) + (f_{100300}/\varepsilon_3/\varepsilon_5/\varepsilon_6 + f_{001020}/\varepsilon_3/\varepsilon_6) + (f_{100300}/\varepsilon_3/\varepsilon_6) + (f_{100300}/\varepsilon_6) + (f_{10030}/\varepsilon_6) + (f_{100300}/\varepsilon_6) + (f_{100300}/\varepsilon_6) + (f_{100300}/\varepsilon_6) + (f_{100300}/\varepsilon_6) + (f_{100300}/\varepsilon_6) + (f_{100300}/\varepsilon_6) + (f_{10030}/\varepsilon_6) + (f_{100300}/\varepsilon_6) + (f_{10030}/\varepsilon_6) + (f_{10030}/$ $f_{100210}/\varepsilon_1/\varepsilon_4^2/\varepsilon_5 + f_{100201}/\varepsilon_1/\varepsilon_4^2/\varepsilon_6 + f_{100210}/\varepsilon_1/\varepsilon_4^2/\varepsilon_5 + f_{100120}/\varepsilon_1/\varepsilon_4/\varepsilon_5^2 + f_{100111}/\varepsilon_1/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{100201}/\varepsilon_1/\varepsilon_4^2/\varepsilon_6$ $f_{100111}/\varepsilon_1/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{100102}/\varepsilon_1/\varepsilon_4/\varepsilon_6^2 + f_{100210}/\varepsilon_1/\varepsilon_4^2/\varepsilon_5 + f_{100120}/\varepsilon_1/\varepsilon_4/\varepsilon_5^2 + f_{100111}/\varepsilon_1/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{100120}/\varepsilon_1/\varepsilon_4/\varepsilon_5^2$ $\frac{1}{20000} \left(\varepsilon_{1} \right) \left(\varepsilon_{5}^{2} + f_{100021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5}^{2} \right) \left(\varepsilon_{6} + f_{100111} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6} + f_{100021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6}^{2} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{5} \right) \left(\varepsilon_{6} + f_{10021} \right) \left(\varepsilon_{1} \right) \left(\varepsilon_{1}$ $\frac{1}{100102}/\varepsilon_1/\varepsilon_4/\varepsilon_6^2 + \frac{1}{100111}/\varepsilon_1/\varepsilon_4/\varepsilon_5/\varepsilon_6 + \frac{1}{100021}/\varepsilon_1/\varepsilon_5^2/\varepsilon_6 + \frac{1}{100012}/\varepsilon_1/\varepsilon_5/\varepsilon_6^2 + \frac{1}{100102}/\varepsilon_1/\varepsilon_4/\varepsilon_6^2 + \frac{1}{10012}/\varepsilon_1/\varepsilon_5/\varepsilon_6^2 + \frac{1}{10012}/\varepsilon_1/\varepsilon_5/\varepsilon_5/\varepsilon_6^2 + \frac{1}{10012}/\varepsilon_1/\varepsilon_5/\varepsilon_6^2 + \frac{1}{10012}/\varepsilon_5/\varepsilon_6^2 + \frac{1}{10012}/\varepsilon_5/\varepsilon_5/\varepsilon_5^2 + \frac{1}{10012}/\varepsilon_5/\varepsilon_5/\varepsilon_5/\varepsilon_5/\varepsilon_5} + \frac{1}{10012}/\varepsilon_5/\varepsilon_5/\varepsilon_5/\varepsilon_5} + \frac{1}{10012}/\varepsilon_5/\varepsilon_5/\varepsilon_5$ $\sum_{j=1}^{2} (\varepsilon_2/\varepsilon_4/\varepsilon_5^2 + f_{01000}/\varepsilon_2/\varepsilon_5^3 + f_{010021}/\varepsilon_2/\varepsilon_5^2/\varepsilon_6 + f_{010111}/\varepsilon_2/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{010021}/\varepsilon_2/\varepsilon_5^2/\varepsilon_6 + f_{010012}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{010021}/\varepsilon_2/\varepsilon_4/\varepsilon_6 + f_{010021}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{010021}$ $\frac{1}{|\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{01003}/\varepsilon_2/\varepsilon_3/\varepsilon_6^2 + f_{00111}/\varepsilon_2/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{01021}/\varepsilon_2/\varepsilon_5/\varepsilon_6 + f_{010012}/\varepsilon_2/\varepsilon_5/\varepsilon_6^2 + f_{01002}/\varepsilon_2/\varepsilon_5/\varepsilon_6^2 + f_{01002}/\varepsilon_3/\varepsilon_4^2/\varepsilon_5 + f_{01120}/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{01211}/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{01120}/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{0120}/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{0120}/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{0120}/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{0120}/\varepsilon_5/\varepsilon_5 + f_{0120}/\varepsilon_5 + f_{0120}/\varepsilon_5/\varepsilon_5 + f_{0120}/\varepsilon_5/\varepsilon_5 + f_{0120}/\varepsilon_5/\varepsilon_5 + f_{0120}/\varepsilon_5 + f_{0120}/\varepsilon_5/\varepsilon_5 + f_{0$ $f_{001111}/\varepsilon_3/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{001201}/\varepsilon_3/\varepsilon_4^2/\varepsilon_6 + f_{001111}/\varepsilon_3/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{001102}/\varepsilon_3/\varepsilon_4/\varepsilon_6^2 + f_{001210}/\varepsilon_3/\varepsilon_4^2/\varepsilon_5 + f_{001120}/\varepsilon_3/\varepsilon_4/\varepsilon_5^2 + f_{001210}/\varepsilon_3/\varepsilon_4/\varepsilon_5 + f_{001210}/\varepsilon_3/\varepsilon_5 + f_{001210}/\varepsilon_5 + f_{0$ $f_{001111}/\varepsilon_3/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{001120}/\varepsilon_3/\varepsilon_4/\varepsilon_5^2 + f_{001020}/\varepsilon_3/\varepsilon_5^3 + f_{001021}/\varepsilon_3/\varepsilon_5^2/\varepsilon_6 + f_{001111}/\varepsilon_3/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{001021}/\varepsilon_3/\varepsilon_5^2/\varepsilon_6 + f_{001021}/\varepsilon_5/\varepsilon_6 + f_{0$ $\begin{array}{c} \sum_{j=1}^{2} \sum_{j=1}^{2$ $f_{010100}/\varepsilon_2/\varepsilon_4 + f_{010010}/\varepsilon_2/\varepsilon_5 + f_{010001}/\varepsilon_2/\varepsilon_6 + f_{001100}/\varepsilon_3/\varepsilon_4 + f_{001010}/\varepsilon_3/\varepsilon_5 + f_{001001}/\varepsilon_3/\varepsilon_6)(f_{000100}/\varepsilon_4 + f_{000010}/\varepsilon_5 + f_{010010}/\varepsilon_5)/\varepsilon_6) = 0$ $f_{000001}/\varepsilon_{6}) - 3(f_{100200}/\varepsilon_{1}/\varepsilon_{4}^{2} + f_{100110}/\varepsilon_{1}/\varepsilon_{4}/\varepsilon_{5} + f_{100101}/\varepsilon_{1}/\varepsilon_{4}/\varepsilon_{6} + f_{100110}/\varepsilon_{1}/\varepsilon_{4}/\varepsilon_{5} + f_{100020}/\varepsilon_{1}/\varepsilon_{5}^{2} + f_{100011}/\varepsilon_{1}/\varepsilon_{5}/\varepsilon_{6} + f_{100110}/\varepsilon_{1}/\varepsilon_{4}/\varepsilon_{5} + f_{100110}/\varepsilon_{1}/\varepsilon_{4}/\varepsilon_{5} + f_{100110}/\varepsilon_{1}/\varepsilon_{5}/\varepsilon_{6} + f_{100110}/\varepsilon_{1}/\varepsilon_{5}/\varepsilon_{6} + f_{100110}/\varepsilon_{1}/\varepsilon_{5}/\varepsilon_{6} + f_{100110}/\varepsilon_{1}/\varepsilon_{5}/\varepsilon_{5} + f_{100011}/\varepsilon_{1}/\varepsilon_{5}/\varepsilon_{6} + f_{100110}/\varepsilon_{1}/\varepsilon_{5}/\varepsilon_{6} + f_{100110}/\varepsilon_{1}/\varepsilon_{5}/\varepsilon_{5}/\varepsilon_{6} + f_{100110}/\varepsilon_{1}/\varepsilon_{5}/\varepsilon_{6} + f_{100110}/\varepsilon_{1}/\varepsilon_{5}/\varepsilon_{6} + f_{100110}/\varepsilon_{1}/\varepsilon_{5}/\varepsilon_{5}/\varepsilon_{6} + f_{100110}/\varepsilon_{1}/\varepsilon_{5}/\varepsilon_{6} + f_{100110}/\varepsilon_{5}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}/\varepsilon_{6}$ $\int \cos(2\theta) - (\xi_{1}/\xi_{0}) - ($

 $f_{000010}/\varepsilon_5 + f_{000001}/\varepsilon_6) + 3(f_{100100}/\varepsilon_1/\varepsilon_4 + f_{100010}/\varepsilon_1/\varepsilon_5 + f_{100001}/\varepsilon_1/\varepsilon_6 + f_{010100}/\varepsilon_2/\varepsilon_4 + f_{010010}/\varepsilon_2/\varepsilon_5 + f_{010001}/\varepsilon_2/\varepsilon_6 + f_{010001}/\varepsilon_2/\varepsilon_6 + f_{010001}/\varepsilon_2/\varepsilon_5 + f_{010001}/\varepsilon_2/\varepsilon_6 + f_{010001}/\varepsilon_2/\varepsilon_6 + f_{010010}/\varepsilon_2/\varepsilon_5 + f_{010001}/\varepsilon_2/\varepsilon_6 + f_{010010}/\varepsilon_2/\varepsilon_6 + f_{010010}/\varepsilon_2/\varepsilon_5 + f_{010010}/\varepsilon_2/\varepsilon_6 + f_{010010}/\varepsilon_6 + f_{010010}/\varepsilon_6 + f_{010010}/\varepsilon_6 + f_{010010}/\varepsilon_6 + f_{0100000}/\varepsilon_6 + f_{0100000}/\varepsilon_6 + f_{01000000}/\varepsilon_6 + f_{0100000000}/$ $f_{001100}/\varepsilon_3/\varepsilon_4 + f_{001010}/\varepsilon_3/\varepsilon_5 + f_{001001}/\varepsilon_3/\varepsilon_6)(f_{000100}/\varepsilon_4 + f_{000010}/\varepsilon_5 + f_{000001}/\varepsilon_6)^2 - 3(f_{100000}/\varepsilon_1 + f_{010000}/\varepsilon_2 + f_{001000}/\varepsilon_3)(f_{00010}/\varepsilon_5 + f_{000001}/\varepsilon_6)^2 - 3(f_{100000}/\varepsilon_1 + f_{010000}/\varepsilon_5 + f_{000001}/\varepsilon_6)^2 - 3(f_{100000}/\varepsilon_1 + f_{010000}/\varepsilon_5 + f_{000001}/\varepsilon_6)^2 - 3(f_{100000}/\varepsilon_1 + f_{010000}/\varepsilon_5 + f_{000001}/\varepsilon_6)^2 - 3(f_{100000}/\varepsilon_5 + f_{000000}/\varepsilon_5 + f_{000000}/\varepsilon_6)^2 - 3(f_{100000}/\varepsilon_5 + f_{000000}/\varepsilon_6)^2 - 3(f_{100000}/\varepsilon_5 + f_{000000}/\varepsilon_6)^2 - 3(f_{100000}/\varepsilon_5 + f_{00000}/\varepsilon_6)^2 - 3(f_{100000}/\varepsilon_6)^2 - 3(f_{10000}/\varepsilon_6)^2 - 3(f_{10000}/\varepsilon_6)^2 - 3(f_{10000}/\varepsilon_6)^2 - 3(f_{100000}/\varepsilon_6)^2 - 3(f_{10000}/\varepsilon_6)^2 - 3(f_{10000$ $f_{000010}/\varepsilon_5 + f_{000001}/\varepsilon_6)^3 - (f_{100000}/\varepsilon_1 + f_{010000}/\varepsilon_2 + f_{001000}/\varepsilon_3)(f_{000100}/\varepsilon_4 + f_{000010}/\varepsilon_5 + f_{000001}/\varepsilon_6) - 3(f_{000200}/\varepsilon_4^2 + f_{000010}/\varepsilon_5)) - 3(f_{000200}/\varepsilon_4^2 + f_{000010}/\varepsilon_5) + f_{000001}/\varepsilon_6) - 3(f_{000200}/\varepsilon_4 + f_{000010}/\varepsilon_5)) - 3(f_{000200}/\varepsilon_4 + f_{000010}/\varepsilon_5) + f_{0000010}/\varepsilon_6) - 3(f_{000200}/\varepsilon_4 + f_{000010}/\varepsilon_5)) - 3(f_{000200}/\varepsilon_4 + f_{000010}/\varepsilon_5)) - 3(f_{000200}/\varepsilon_4 + f_{000010}/\varepsilon_5)) - 3(f_{000200}/\varepsilon_4 + f_{000010}/\varepsilon_5)) - 3(f_{000200}/\varepsilon_4 + f_{0000010}/\varepsilon_5)) - 3(f_{000200}/\varepsilon_4 + f_{000010}/\varepsilon_5)) - 3(f_{000200}/\varepsilon_4 + f_{000010}/\varepsilon_5)) - 3(f_{000200}/\varepsilon_4 + f_{0000010}/\varepsilon_5)) - 3(f_{000200}/\varepsilon_4 + f_{000010}/\varepsilon_5)) - 3(f_{000200}/\varepsilon_5)) - 3(f_{0$ $f_{000110}/\varepsilon_4/\varepsilon_5 + f_{000101}/\varepsilon_4/\varepsilon_6 + f_{000110}/\varepsilon_4/\varepsilon_5 + f_{00020}/\varepsilon_5^2 + f_{00011}/\varepsilon_5/\varepsilon_6 + f_{000110}/\varepsilon_4/\varepsilon_6 + f_{000011}/\varepsilon_5/\varepsilon_6 + f_{000001}/\varepsilon_5)(f_{100000}/\varepsilon_1 + f_{100000}/\varepsilon_2)(f_{100000}/\varepsilon_1 + f_{100000}/\varepsilon_2)(f_{100000}/\varepsilon_2) + f_{100000}/\varepsilon_2)(f_{100000}/\varepsilon_2) + f_{100000}/\varepsilon_2)(f_{100000}/\varepsilon_2)(f_{100000}/\varepsilon_2) + f_{100000}/\varepsilon_2)(f_{100000}/\varepsilon_2)(f_{100000}/\varepsilon_2) + f_{100000}/\varepsilon_2)(f_{100000}/\varepsilon_2)(f_{100000}/\varepsilon_2)(f_{100000}/\varepsilon_2)(f_{100000}/\varepsilon_2))(f_{100000}/\varepsilon_2)(f_{10000}/\varepsilon_2)(f_{10000}/\varepsilon_2)(f_{100000}/\varepsilon_2)(f_{100000}/\varepsilon_2)(f_{1000}/\varepsilon_2)(f_{10000}/\varepsilon_2)(f_{1000}/\varepsilon_2)(f_{10000}/\varepsilon_2)(f_{1000}/\varepsilon_2)(f_{10000}/\varepsilon_2)(f_{10$ $f_{010000}/\varepsilon_2 + f_{001000}/\varepsilon_3) - (f_{000300}/\varepsilon_3^4 + f_{000210}/\varepsilon_4^2/\varepsilon_5 + f_{000201}/\varepsilon_4^2/\varepsilon_6 + f_{000210}/\varepsilon_4^2/\varepsilon_5 + f_{000120}/\varepsilon_4/\varepsilon_5^2 + f_{000111}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000210}/\varepsilon_4/\varepsilon_5^2) = 0$ $f_{000201}/\varepsilon_4^2/\varepsilon_6 + f_{000111}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000102}/\varepsilon_4/\varepsilon_6^2 + f_{000210}/\varepsilon_4^2/\varepsilon_5 + f_{000120}/\varepsilon_4/\varepsilon_5^2 + f_{000111}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000120}/\varepsilon_4/\varepsilon_5^2 + f_{000111}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000120}/\varepsilon_4/\varepsilon_5^2 + f_{000110}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000110}/\varepsilon_6/\varepsilon_6/\varepsilon_6 + f_{000$ $\frac{1}{2} \frac{1}{2} \frac{1}$ $f_{000111}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000021}/\varepsilon_5^2/\varepsilon_6 + f_{000012}/\varepsilon_5/\varepsilon_6^2 + f_{000102}/\varepsilon_4/\varepsilon_6^2 + f_{000012}/\varepsilon_5/\varepsilon_6^2 + f_{000003}/\varepsilon_6^3)(f_{100000}/\varepsilon_1 + f_{010000}/\varepsilon_2 + f_{010000}/\varepsilon_2) + f_{010000}/\varepsilon_2 + f_{010000}/\varepsilon_2) + f_{010000}/\varepsilon_2 + f_{000012}/\varepsilon_5/\varepsilon_6^2 + f_{000012}/\varepsilon_5/\varepsilon_5/\varepsilon_5^2 + f_{000012}/\varepsilon_5/\varepsilon_5^2 + f_{000012}/\varepsilon_5/\varepsilon_5^2 + f_{0000$ $c_{00000}/\varepsilon_3) + 3(f_{100000}/\varepsilon_1 + f_{010000}/\varepsilon_2 + f_{001000}/\varepsilon_3)(f_{000100}/\varepsilon_4 + f_{000010}/\varepsilon_5 + f_{000001}/\varepsilon_6)^2 + 3(f_{000200}/\varepsilon_4^2 + f_{000110}/\varepsilon_4/\varepsilon_5 + f_{000010}/\varepsilon_6)^2 + 3(f_{000200}/\varepsilon_4 + f_{000100}/\varepsilon_6)^2 + f_{000000}/\varepsilon_6)^2 + f_{0000000}/\varepsilon_6)^2 +$ $\frac{1}{2} (1 - \frac{1}{2}) (1 - \frac$ $(5_{00100}/\varepsilon_3)(f_{000100}/\varepsilon_4 + f_{000010}/\varepsilon_5 + f_{000010}/\varepsilon_6)) + ((f_{000100}/\varepsilon_4 + f_{000010}/\varepsilon_5 + f_{000010}/\varepsilon_6) + 7(f_{000200}/\varepsilon_4^2 + f_{000110}/\varepsilon_4/\varepsilon_5 + f_{000100}/\varepsilon_6)) + 7(f_{000200}/\varepsilon_4^2 + f_{000100}/\varepsilon_6)) + 7(f_{000200}/\varepsilon_4) + f_{000100}/\varepsilon_6) + 7(f_{000200}/\varepsilon_6) + 7(f_{00020$ $\frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} \sum_{i=1}^{2} \frac{1}$ $f_{000210}/\varepsilon_4^2/\varepsilon_5 + f_{000201}/\varepsilon_4^2/\varepsilon_6 + f_{000210}/\varepsilon_4^2/\varepsilon_5 + f_{000120}/\varepsilon_4/\varepsilon_5^2 + f_{000111}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000201}/\varepsilon_4^2/\varepsilon_6 + f_{000111}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000201}/\varepsilon_4^2/\varepsilon_6 + f_{000111}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000110}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000111}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000111}/\varepsilon_6/\varepsilon_6/\varepsilon_6 + f_{00011}/\varepsilon_6/\varepsilon_6/\varepsilon_6 + f_{00011}/\varepsilon_6/\varepsilon_6/\varepsilon_6 + f_{00011}/\varepsilon_6/\varepsilon_6/\varepsilon_6 + f_{00011}$ $\int \frac{1}{2} \int \frac$ $\frac{1}{2} \frac{1}{2} \frac{1}$ $\frac{1}{2} \int_{0}^{2} \int_{0}^$ $\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1$ ${}_{00111}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000102}/\varepsilon_4/\varepsilon_6^2 + f_{000111}/\varepsilon_4/\varepsilon_5/\varepsilon_6 + f_{000021}/\varepsilon_5^2/\varepsilon_6 + f_{00012}/\varepsilon_5/\varepsilon_6^2 + f_{000102}/\varepsilon_4/\varepsilon_6^2 + f_{00012}/\varepsilon_5/\varepsilon_6^2$ $\begin{array}{l} 00111/\epsilon_4/\epsilon_5/\epsilon_6 + J000102/\epsilon_4/\epsilon_6 + J00011/\epsilon_4/\epsilon_5/\epsilon_6 + J000021/\epsilon_5/\epsilon_6 + J000021/\epsilon_5/\epsilon_6 + J000012/\epsilon_4/\epsilon_6 + J000012/\epsilon_5/\epsilon_6 +$ $\begin{array}{l} f_{10000}(\varepsilon_{3} + f_{00000})(\varepsilon_{1}/\varepsilon_{2} + f_{101000})(\varepsilon_{1}/\varepsilon_{3} + f_{10000})(\varepsilon_{3}/\varepsilon_{3} + f_{02000})(\varepsilon_{3}/\varepsilon_{3} + f_{10100}/\varepsilon_{3}/\varepsilon_{3} + f_{02000})(\varepsilon_{3}/\varepsilon_{3} + f_{10100}/\varepsilon_{3}/\varepsilon_{3} + f_{02000})(\varepsilon_{3}/\varepsilon_{3} + f_{02000})(\varepsilon_{3}/\varepsilon_{3$ $\begin{array}{l} & \left[f_{00001}/\varepsilon_2/\varepsilon_6 + f_{00100}/\varepsilon_3/\varepsilon_4 + f_{00100}/\varepsilon_3/\varepsilon_5 + f_{00100}/\varepsilon_3/\varepsilon_6 - (f_{100000}/\varepsilon_1 + f_{010000}/\varepsilon_2 + f_{01000}/\varepsilon_3)(f_{000100}/\varepsilon_4 + f_{00010}/\varepsilon_5 + f_{000010}/\varepsilon_5 + f_{000000}/\varepsilon_5 + f_{00000}/\varepsilon_5 + f_{000000}/\varepsilon_5 + f_{000000}/\varepsilon_5 + f$

3-bins 1188 terms !!

P. Tribedy

Response matrix

Forward Matrix (MC^{gen} ---> MC^{rec})

Reversed Matrix (MC^{rec} ---> MC^{gen})

(N_a^{gen}, N_b^{gen}) (0-39, 0-39)

 (N_a^{rec}, N_b^{rec}) (0-39, 0-39)

Unfolding of net-distribution, BES workshop in Fudan, Shanghai, China, 15-18/Aug/2017

Shinlchi Esumi, Univ. of Tsukuba, CiRfSE

8

Unfolding of net-distribution, BES workshop in Fudan, Shanghai, China, 15-18/Aug/2017

ShinIchi Esumi, Univ. of Tsukuba, CiRfSE

7

Unfolding with Volume Fluctuation (V.F.)

Volume fluctuation is assumed to be known precisely according to Glauber (or any other initial) model. V.F. naturally induces a positive correlation between $N_A vs N_B$. Gaussian fluctuation is used in this toy model simulation.

Unfolding of net-distribution, EMMI workshop, Wuhan, China, 10-14/Sep/2017

Poisson test : Cumulants

- ✓ We can stop iterations once cumulants don't change with iterations.
- Incremental unfolding is effective way to recover bins that don't exist in simulation, but seems difficult to get higher order cumulants converged.
- Conventional unfolding (not updating the response matrix) is also implemented to get cumulants converged.

Unfolding with binomial model

 $\sqrt{s_{NN}}$ = 200 GeV, net-proton, lyl < 0.5, 0.4 < p_T < 2.0 (GeV/c), without CBWC, binomial model

T. Nonaka, Defence for Ph.D thesis, Feb. 9 84

Binomial model

Unfolding gives consistent results with efficiency correction by assuming binomial model in MC filter.

 $\sqrt{s_{NN}}$ = 200 GeV, Run11, net-proton, lyl < 0.5, 0.4 < p_T < 2.0 (GeV/c), without CBWC, binomial model

(Non)binomial fitting

Extracted a parameter will be implemented in unfolding to see how C₆ is affected by non-binomial model.

 n_p : Number of reconstructed protons

Comparison of x²/ndf

- ✓ At $\sqrt{s_{NN}}$ = 200 GeV, beta-binomial seems to close to data, which might be due to the superposition of different refmult3.
- ✓ Mostly x²/ndf<1, more embedding statistics are necessary!</p>

1.0<p⊤<2.0 (GeV/c)

R. Holtzman, QM2017

Centrality determination

- 1. Use charged particles except protons in order to suppress the auto-correlation.
- 2. Those particles are counted at the wide eta range |η|<1.0 to increase the centrality resolution.
- Glauber and two-component model (with NBD fluctuaiton) are tuned to reproduce the measured multiplicity distribution.

CBWC in UrQMD model

X. Luo, et al : J. Phys., G40:105104, 2013.

N_{part} cumulants

♦ N_{part} cumulants have the extreme value at 10-20% (N_{part}~230).

N_{part} cumulants for one multiplicity bin

 N_{part} cumulants have been calculated at each multiplicity bin in order to estimate the effect of participant fluctuations on CBWC.

Centrality bin width dependence?

✓ It was found that VFC results on experimentI data up to 4th order cumulant depend on the centrality bin width.

✓ Results converge with small bin width.

Multiplicity dependent efficiency

- Centrality bin width dependence for VFC can be explained by multiplicity dependent efficiency.
- For VFC : Efficiency correction is applied using the averaged efficiency in one centrality, then apply VFC. This result is suppressed by multiplicity dependent efficiency PRC.94.064907.
- This effect will be small by reducing the centrality bin width (efficiency variation).

Beam energy dependence : C₃

- Centrality bin width dependence is observed in VFC at all beam energies, and they seem to converge to certain value with narrow bin width.

Net-proton, |y| < 0.5, $0.4 < p_T < 2.0$ (GeV/c)

Beam energy dependence : C₄

Net-proton, |y| < 0.5, $0.4 < p_T < 2.0$ (GeV/c)

Beam energy dependence : C_3/C_2

Net-proton, |y| < 0.5, $0.4 < p_T < 2.0$ (GeV/c)

Beam energy dependence : C_4/C_2

Net-proton, |y| < 0.5, $0.4 < p_T < 2.0$ (GeV/c)

Comparison with preliminary results

- Thanks to Jamie for suggestion.
- Assumption that particles are generated from independent source of quark participant.
- Fitting with quark participant model to the STAR data at 200 GeV refmult3 distribution to extract correction factors.

Nw (# of participant nucleons) → # of participant quarks

 $\begin{aligned} \kappa_1(\Delta N) &= \langle N_W \rangle \, \kappa_1(\Delta n), \\ \kappa_2(\Delta N) &= \langle N_W \rangle \, \kappa_2(\Delta n) + \langle \Delta n \rangle^2 \, \kappa_2(N_W), \\ \kappa_3(\Delta N) &= \langle N_W \rangle \, \kappa_3(\Delta n) + 3 \, \langle \Delta n \rangle \, \kappa_2(\Delta n) \kappa_2(N_W) + \langle \Delta n \rangle^3 \, \kappa_3(N_W), \\ \kappa_4(\Delta N) &= \langle N_W \rangle \, \kappa_4(\Delta n) + 4 \, \langle \Delta n \rangle \, \kappa_3(\Delta n) \kappa_2(N_W) \\ &+ 3\kappa_2^2(\Delta n) \kappa_2(N_W) + 6 \, \langle \Delta n \rangle^2 \, \kappa_2(\Delta n) \kappa_3(N_W) + \langle \Delta n \rangle^4 \, \kappa_4(N_W). \end{aligned}$

Mostly consistent with the participant nucleon picture in small centrality binning.

T. Nonaka, UTTAC seminar, Nov. 30

Additional check with two component source

Additional check with two component source

Mostly consistent in small centrality binning.

Results with difference source assumptions

- Another model assuming proton production from two component source as is used for centrality determination.
- Mostly consistent with the participant nucleon picture in small centrality binning.

N_{part} cumulants with different centrality bin width

 $\sqrt{s_{NN}}$ = 200 GeV, Glauber + Two-component model

Centrality resolution

- ✓ Multiplicity is determined by two component model with negative binomial fluctuation.
- ✓ (Anti)Protons are generated from event by event Npart source according to Poisson.
- ✓ Look at the effect of centrality resolution on the volume fluctuation.

109

Results

- ✓ CBWC strongly depends on the centrality resolution.
- ✓ VFC is independent on the centrality resolution.

- 100% reso.
- □ 50% reso.
- 🕂 20% reso.

Results

✓ CBWC strongly depends on the centrality resolution.
✓ VFC is independent on the centrality resolution.

111

Comparison with true cumulants in UrQMD model

Systematic uncertainties

	nσ _p	mass ²	DCA	nHitsFit	efficiency
0-10%	23.6	44.0	9.35	21.2	1.94
10-20%	2.31	23.9	27.9	40.5	5.36
20-30%	31.5	6.60	17.0	32.0	12.9
30-40%	51.4	21.3	4.07	7.47	15.8
40-50%	29.9	4.89	65.1	0.06	0.05
50-60%	8.06	12.3	62.6	7.30	9.76
60-70%	0.960	9.02	75.7	7.50	6.78
70-80%	48.1	4.13	0.10	29.1	18.6

Statistical errors

- Simple toy model to estimate the statistical errors assuming 0-10% centrality at 200 GeV.
- Statiscical errors strongly depends on efficiency
 - Statistical errors with HFT will become 100 times larger than without HFT (e.g. eff : 50%->10%).
 - C₆ analysis with HFT tracking will be hopeless.

Systematic study

variable	default	cut	details
lno _p l	<2.0	<2.5	worsen purity
mass ²	0.6 <m<sup>2<1.2</m<sup>	0.7 <m²<1.3 0.8<m²<1.4< th=""><th>decreas kaon contamination</th></m²<1.4<></m²<1.3 	decreas kaon contamination
nHitsFit	>20	>15	increases the fraction of track splitting
DCA	<1.0	<1.5	increases secondory protons
efficiency	(ε _{lowpt} ,ε _{highpt})	(1.05*ε _{lowpt} ,1.05*ε _{highpt}) (0.95*ε _{lowpt} ,0.95*ε _{highpt}) (1.05*ε _{lowpt} ,0.95*ε _{highpt}) (0.95*ε _{lowpt} ,1.05*ε _{highpt})	
Detector effect correction	efficiency correcction with binomial model	unfolding with beta- binomial model	
Pileup rejection (nTofMatch = a*Refmult + b)	(a,b) = (0.5,-13)	(0.3,-13)	includes some pileup events

Run10 and Run11

✓ Results from run10 and run11 are consistent within 3σ.
✓ Results from run10 central trigger are not shown here.

Systematic check (Run10)

Systematic check (Run11)

DCA distribution

