Measurements of Azimuthal Angle Dependence of HBT radii with respect to event plane in $\sqrt{s_{NN}} = 2.76$ TeV Pb-Pb collisions at LHC-ALIE

田中 直斗 高エネルギー原子核実験グループ

2017.October.23 Naoto Tanaka High Energy Nuclear Physics Group

Outline

✓ Introduction

- Quark Gluon Plasma
- HBT interferometory
- ✓ Experiment & Analysis
 - ALICE
 - Analysis methods
- ✓ Result & Discussions
 - Azimuthal angle dependence of HBT radii w.r.t. E.P.
 - Blast wave fit
 - Correlation between flow and HBT with ESE
 - Comparison with 3+1D hydrodynamic calculation

Introduction

Quark Gluon Plasma (QGP)

- ✓ Extremely high temperature and density
 - \checkmark quarks and gluons are deconfined from hadron
- ✓ QGP exists in early universe and neutron star
- ✓ Latice QCD calculation predicts phase transition
 - ✓ T_c ~ 170 MeV
 - $\checkmark \epsilon_c \sim 1 \text{ GeV/fm}^3$

Important to understand History of the universe !

Heavy ion collision at LHC

Space time evolution

✓ To quantify the properties of QGP, namely dynamically expanding source, a precise understanding of spatial and temporal evolution is required
 ✓ Freeze out time, emission duration, system size
 ➡ HBT is a unique tool to measure the size and lifetime of the source

HBT interferometry

✓ Hanbury Brown & Twiss (Femtoscopy, Bose Einstein correlations)
 ✓ Measure the source size with correlation between two identical particles

$$\Psi_{12}(p_1, p_2) = \frac{1}{\sqrt{2}} \left(e^{ip_1(x_1 - r_1)} e^{ip_2(x_2 - r_2)} \pm e^{ip_1(x_1 - r_2)} e^{ip_2(x_2 - r_1)} \right) \quad \checkmark \quad \text{Boson + }$$

$$C_{2} = \frac{P(p_{1}, p_{2})}{P(p_{1}) P(p_{2})} \approx 1 + |\tilde{\rho}(q)|^{2} = 1 + \exp\left(-R^{2}q^{2}\right) \quad \checkmark q = p_{1} - p_{2}$$

\checkmark Source distribution ρ is assumed to be gaussian

3D HBT analysis

For more detailed spatial information, correlation function is expanded to 3-dimension

What HBT radii represents?

Recent results of HBT analysis

✓ Search of critical end point

- $(R_{out})^2$ $(R_{side})^2$ is sensitive to emission duration
 - monotonic behaviour can be found in 10 GeV

Azimuthal anisotropy

Azimuthally sensitive HBT w.r.t. Ψ_2

Relation between initial and final source eccentricity allows us to study how the system evolves until the freeze-out, which likely depends on the flow velocity profile, the system lifetime and n/s

Final source eccentricity @ LHC energy

- ► Hydro model predicts R_{side} and R_{out} oscillate in phase at low k_T
 - ✓ Larger collective flow deforms final source shape
 - ✓ Extract parameters of bulk property(shape, evolution time and velocity)

- HBT w.r.t. Ψ₂ with ideal hydro-simulation (b=7)
- ► J. Phys G: Nucl Part. Phys. 34 (2007) 2249-2254

Final source triangular shape and HBT w.r.t. Ψ_2

- AMPT and Blast wave model (S.Voloshin, J. Phys. G38, 124097)
 - ✓ HBT w.r.t. Ψ_3 shows finite oscillation in expanding source, but almost no oscillation in static source
- + HBT w.r.t. Ψ 3 measured @ PHENIX Au+Au 200GeV (Phys.Rev.Lett. 112 222301)
 - ✓ Same oscillation sign of R_{out} and $R_{side} \rightarrow$ Relative amplitude negative value
 - Negative or Zero oscillation in sideward

Final source triangular shape and HBT w.r.t. Ψ_3

Triangularity cannot be directly obtained from HBT w.r.t. Ψ₃

Both triangular flow and geometrical triangularity make 3rd order oscillation of HBT radii

M Detailed analysis is necessary for understanding final source triangularity

- ★ k_T dependence of Azimuthally differential femtoscopy w.r.t. Ψ₃
 - ➡ High multiplicity and good E.P. resolution in ALICE Pb-Pb collisions !
- Direct measurement of correlation between geometrical and flow information

Event shape engineering (ESE)

Event by event flow amplitude selection

- J. Schukraft, A.Timmins and S. A. Voloshin, Phys. Lett. B719, 394-398 (2013)
- Event by event $v_2(v_3)$ fluctuation is selected with flow vector $q_2(q_3)$
 - ✓ Possibly control the initial eccentricity

Extract space time extend of Quark Gluon Plasma with Azimuthally

sensitive HBT and Event Shape Engineering in 2.76TeV Pb-Pb collisions

Elliptic shape

- Measurements of azimuthally sensitive HBT w.r.t. Ψ_2 in LHC energy
 - ► centrality and k_T dependence
- Correlation between Initial and final source eccentricity with ESE
- Extract freeze out parameters with Blast wave fit

Triangular shape

- Measurements of azimuthally sensitive HBT w.r.t. \u03c83
 - centrality and k_T dependence
- Measurement of correlation between v₃ and HBT oscillation w.r.t. Ψ₃

My activity

Master

- DCAL construction
- EMCAL SRU work @cern
- DCAL commissioning
- Shift taking @ PHENIX
- ► HBT w.r.t. Ψ₂ and Ψ₃

KEK summer challenge M1->D4

Development of radon detector ->D4

Doctor

- Shift taking @ CERN
- HBT w.r.t. Jet axis
- HBT relative to Ψ_2 and Ψ_3 with ESE

Experiment & Analysis

ALICE Detector

In this analysis ✓ Trigger & centrality √ V0_A : 2.8 < η < 5.1 \checkmark V0_C : -3.7 < η < -1.7 TPC & ITS ✓ Tracking & PID ✓ Vertex ✓ Iη_{track}I < 0.8</p> TOF ✓ PID $\checkmark |\eta_{track}| < 0.8$ **FMD** ✓ Event plane ✓ FMD_A : 1.7 < η < 5.0 ✓ FMD_C : $-3.4 < \eta < -1.7$

Event Plane determination

This excellent resolution allows us precise measurement of higher order E.P. 21

Charged hadron identification

- charged pions are identified with TPC+TOF \cdot TPC
 - Energy loss (dE/dx)
 - dE/dx resolution \sim 6.8% in dNdy = 8000
- TOF

TOF

TOF

- Time of flight, mass
- Performance evaluated $\sigma TOF = 60$ (ps)

0.9

0.8

0.6

0.5 p

0.4

0.3

0.0 < p[GeV/c] < 0.50 : |OTPC | < 3.0

0.7 K

$$m^2 = p^2 \left(\left(\frac{t}{L}\right)^2 - 1 \right)$$

TPC & TOF combined PID

• 0

|στο**f |** < 3.0, **|**στρc **|** < 3.0

- $0.5 \le p_{[GeV/c]} < 0.65 : |\sigma_{TPC}| < 2.0$
- $0.65 \le p_{[GeV/c]} < 1.5 : |\sigma_{TOF}| < 3.0, |\sigma_{TPC}| < 5.0$
- 1.5 $\leq p_{[GeV/c]} < 2.0$: $|\sigma_{TOF}| < 2.0, |\sigma_{TPC}| < 5.0$

Two track resolution

Due to the high multiplicity event

Track splitting

- A track is falsely reconstructed as two tracks that are spatially close
- Track merging
 - Two tracks that are spatially close are falsely reconstructed as one
 - These effect modify measured correlation function

Final state interaction and resonance

Like-sign pairs that is spatially close are repulsive with Coulomb

- Correlation function is suppressed for low q pairs
- Coulomb weight is calculated with Coulomb wave function

$$\left[-\frac{\hbar^2 \nabla^2}{2\mu} + \frac{Z_1 Z_2 e^2}{r}\right] = E \Psi_c(r)$$

Resonance decay

Result & Discussion

LICONIC & DIOCHOOLOU

Second harmonics

Azimuthal angle dependence of HBT w.r.t. Ψ_2

50 $R^2_{\rm long}$ (fm²) $R_{\rm out}^2$ (fm²) $R^2_{\rm side}$ (fm²) 40 40 40 30 30 30 20 20 20 10 10 10 0 0 0 ϕ_{pair} - $\Psi_{\text{EP, 2}}$ (rad) $\phi_{_{\text{pair}}}$ - $\Psi_{_{\text{EP, 2}}}$ (rad) ϕ_{pair} - $\Psi_{\text{EP, 2}}$ (rad) 0.6 ج Ros² (fm²) 4 0-5 % out-of-plane 5-10 % 2 0.4 10-20 % 20-30 % n-plane 0 30-40 % 0.2 40-50 % -2 0 Ψ_2 $\phi_{_{\text{pair}}}$ - $\Psi_{_{\text{EP, 2}}}$ (rad) ϕ_{pair} - $\Psi_{\text{EP, 2}}$ (rad) beam axis (∞) • Fit function $R^{2}_{2,0} + 2 R^{2}_{2,2} \cos(2(\phi_{pair} - \Psi_{2}))$ • R²_{2,0} : Average HBT radii, R²_{2,2} : Oscillation amplitude **R**_{side} : width *R*_{out} : depth + time Explicit oscillation can be seen in R_{out}, R_{side} R_{os}

• Rout has larger oscillation than Rside. sensitivity to duration time !

Relative amplitude of HBT radii (2nd harmonics)

even in most central collision , 2R²_{side,2} / R²_{side,0} > 0

Initial out-plane elongated elliptic shape still remains at freeze-out time

k_T dependence of final source eccentricity

▶ 6 centrality class

- 5 10%
- **10-20%**
- **20-30%**
- **030-40%**
- 40-50%

- R²out,2 / R²side,0 does not have significant k_T dependence
- ► R²_{side,2} / R²_{side,0} increase with increasing k_T
- R²_{side,2} / R²_{side,0} in smallest k_T has positive value
 - Inconsistent to hydro prediction
- $R^{2}_{os,2}$ / $R^{2}_{side,0}$ becomes larger from low k_{T} to high k_{T} (significant in peripheral)

Blast wave fit for Spectra, v₂ and HBT radii

- Analytical parametrisation for "Bulk property" based on the hydrodynamical model
- Extended to Azimuthally sensitive HBT interferometry (Phys. Rev. C 70 044907)
- Fitting spectra, v₂ and HBT simultaneously
- ✓ Longitudinal direction
 - boost invariant longitudinal flow
- ★ Transverse momentum space
 - Kinetic freeze out temperature (T_f)
 - Transverse rapidity $\rho(\mathbf{r}, \phi_s) = \tilde{\mathbf{r}}(\rho_0 + \rho_2 \cos(2\phi_p))$
- ★ Coordinate space
 - Transverse extents R_x, R_y
- ★ Freeze out time
 - evolution duration τ_0
 - Emission duration $\Delta \tau$

$$\Omega\left(r,\phi_s\right) = \frac{1}{1 + e^{(\tilde{r}-1)/a_s}}$$

$$\tilde{r}(r,\phi_s) \equiv \sqrt{\frac{\left(r\cos\left(\phi_s\right)\right)^2}{R_x^2} + \frac{\left(r\sin\left(\phi_s\right)\right)^2}{R_y^2}}$$

Blast wave fit for Spectra, v₂ and HBT radii

- T_f , ρ_0 is determined with π , K, p spectra (independent of v_2 and HBT)
- ρ_2 , R_x , R_y/R_x , $\tau 0$, $\Delta \tau$ are determined with v_2 and HBT fit
- Low p_T spectra and v_2 fitting is well done, but more work is necessary for HBT

π, K, p Spectra (Phys.Rev.C 88, 044910 [2013])
PID v2 (JHEP 1609 (2016) 164)

Extracted Blast Wave parameters

- Source size(R_x) and freeze out time (τ_0) increases as a function of $\langle N_{part} \rangle$
- Emission duration slightly increase with increasing <Npart>
- Final source eccentricity decrease from peripheral to central

√Out-plane elongated elliptic shape can be found even in most central events

Blast Wave parameters (comparison with PHENIX)

- + Freeze out temperature(T_f) and eccentricity(R_y/R_x) : ALICE ~ PHENIX
- + Flow velocity (ρ_0 and ρ_2) and evolution time : ALICE > PHENIX
- Emission duration : PHENIX > ALICE

Blast Wave parameters (collision energy dependence)

ALICE data point is fitted with Polynomial

- + ρ_0 and τ_0 in ALICE are 10-20% larger than that in PHENIX
- + 2nd order anisotropy in velocity field ρ_2 in ALICE is over 30% larger than PHENIX
- Emission duration in ALICE is at least 20% smaller than PHENIX

HBT w.r.t. Ψ_2 + ESE v_2 cut (initial ε_2 selection) Large q₂ Small q₂

v₂ for each 20% Event shape q₂ selection

36
Azimuthal angle dependence of HBT radii w.r.t. Ψ_2

▶ 20% q₂ selection enhanced(suppressed) oscillation of *R*_{out} and *R*_{side}

- Strong correlation between v_2 and ϵ_2 final
- For smallest q₂ selection(0-20%)
 - R_{side} has positive sign oscillation (similar to HBT w.r.t. Ψ_3)
 - Initial elliptic shape was reversed or vanished with flow

✓ In-plane extended elliptic shape (or eccentricity was vanished)

participant

flow

freeze-out source

Relative amplitude of HBT radii (2nd harmonics)

centrality (%)

What can be extracted with this ESE(q2) analysis ?

- In order to extract "Initial ε2 v.s. final ε2", Initial ε2 is necessary !
- Basically initial ε₂ is calculated with Glauber "in a certain centrality"
- ➡ Difference of initial ɛ2 with ESE can not be reflected with this method ...
 - + $v_2 \propto \epsilon_2 f(dN/d\eta)$
- Correlation between "v2" and final eccentricity is better than centrality

Final source eccentricity as a function of v₂

✓ All ε₂ with different *q*₂ selection are scaled with v₂ ✓ Final source eccentricity is determined with v₂

Third harmonics

Azimuthal angle dependence of HBT radii w.r.t. Ψ_3

- \Box Oscillations w.r.t. Ψ_3 are observed in R_{out} and R_{side}
- □ *R*_{out} and *R*_{side} oscillations have same sign
 - Consistent to PHENIX result in Au+Au 200GeV collisions (PRL112.222301)
- □ Oscillation amplitude of *R*_{out} and *R*_{side} is almost same
 - → Different from PHENIX result due to larger collective flow?

in-plane $(\Phi_{pair}-\Psi_3=0)$

3rd harmonic oscillation of HBT radii

✓ 3rd harmonic oscillation can be found in all centrality except for R_{long} ✓ R_{out} and R_{side} oscillation grows from central to peripheral ✓ R_{os} is always positive (triangular flow)

Relative amplitude of HBT radii w.r.t. $\Psi_3 k_T$ dependence

✓ Relative amplitude of *Rout* becomes larger with increasing k_T
 ✓ Rside oscillation decreases from low k_T to high k_T
 ✓ Ros shows explicit kT dependence and Ros oscillation is 0 at k_T=0

3rd harmonic oscillation amplitude of HBT radii

(P. Bozek, J. Phys. G38, 124097)

- ✦ Npart dependence in Hydro calc. and Data are qualitative consistent
- R^{2}_{out} oscillation is consistent in hight k_T (Hydro calc. at low p_T is opposite sign)
- ★ R²_{side} oscillation is consistent in low k_T (Hydro calc. can't reproduce k_T dependence)
- ✦ Low k_T of *Ros* oscillation with Hydro calc is underestimate

HBT w.r.t. $\Psi_3 + ESE$ v₃ cut

v₃ (centrality dependence) with 20% step q₃ selection

Azimuthal HBT w.r.t. Ψ_3 with ESE

- 20% largest q₃ vector selection is applied at (-3.4 < η < -1.7, 1.7 < η < 5.0)</p>
- ▶ No significant effect on the *R*_{out} oscillation can be observed by large *q*₃ selection
- ► *R*side oscillation is slightly changed by large *q*₃ cut

Relative amplitude of HBT radii (3rd harmonics)

Rout and Rside

ALI-PREL-116570

No significant change has been observed in relative amplitude

 $(R^{2}_{out,3}/R^{2}_{side,0} \text{ and } R^{2}_{side,3}/R^{2}_{side,0})$, though v3 is enhanced ~ 15%

- Triangular flow is not dominant source of 3rd-order HBT oscillation ?
- ► Large $v_3(q_3)$ event selection \neq large triangular flow event selection ?
- ► q₃ selectivity is too small ?
- Model comparison is necessary

+ Centrality & k_T dependence of HBT relative to Ψ_2

- Out-plane extended elliptic shape can be seen in all centrality
- + Blast wave fit says T_f and ε2(v.s. N_{part}) is consistent to Au+Au 200GeV and ρ 0, ρ2, τ0 is much larger than 200GeV. Δτ is ALICE < PHENIX

+ HBT w.r.t. Ψ₂ with q2 selection

- Final source eccentricity is strongly modified with v2 cut(initial ε2 cut)
 In-plane extended elliptic shape could be seen in smallest q2 event
 Difference of final source eccentricity with q2 cut is scaled with v2
 - ✓ Blast wave fit will tell some more qualitative difference (ε2 or time)

+ Centrality & k_T dependence of HBT relative to Ψ_2

- Non zero oscillation can be found in Rout, Rside and Ros
- Small but finite kT dependence was found in Rout, Rside, Ros
- + Hydrodynamical model is qualitatively consistent to data

+ HBT w.r.t. Ψ3 with q3 selection

Final source eccentricity is not modified with v3 cut

 • kT dependence of Azimuthally sensitive HBT relative to Ψ2 and Ψ3 with ESE q2 and q3 respectively

+ Blast wave fit for HBT relative to Ψ 3 and Ψ 2 with q2

Event plane resolution

• Event Plane Resolution Correction (Phys. Rev. C66, 044903 (2002))

$$N(q,\phi_j) = N_{exp}(q,\phi_j) + 2\sum_{n=1}^{n_{bins}} \xi_{n,m}(\Delta) \left[N_{c,n}^{exp}(q) \cos(n\phi_j) + N_{s,n}^{exp}(q) \sin(n\phi_j) \right]$$
$$N_{c,n}^{exp}(q) \cos(n\phi_j) = \langle N_{exp}(q,\phi_j) \cos(n\phi) \rangle = \frac{1}{n_{bins}} \sum_{n=1}^{n_{bins}} N_{exp}(q,\phi_j) \cos(n\phi_j)$$
$$N_{s,n}^{exp}(q) \sin(n\phi_j) = \langle N_{exp}(q,\phi_j) \sin(n\phi) \rangle = \frac{1}{n_{bins}} \sum_{n=1}^{n_{bins}} N_{exp}(q,\phi_j) \sin(n\phi_j)$$

$$\xi_{n,m}(\Delta) = \frac{n\Delta/2}{\sin(n\Delta/2) \langle \cos\left(n\left(\Psi_n^m - \Psi_n^{true}\right)\right) \rangle} \Rightarrow \text{ event plane resolution}$$

correction for q-distribution with EP resolution

Angular distance in $\Delta \phi^* \Delta \eta$

kT dependence of HBT radii w.r.t. $\Psi 2$

HBT for experimental approach

How to calculate correlation function C₂ in experiment

- $C_{2} = \frac{P(p_{1}, p_{2})}{P(p_{1})P(p_{2})} = \frac{Q_{Real}}{Q_{Mix}}$
- Q_{Real} : pair in same event (HBT effect)

Q_{Mix} : pair in different event (no HBT effect)

C2 : Correlation function

● 補正とカット

– Pair cut

- Event Mixing
- Real eventとMix eventを同じ特徴を持ったeventから選ぶ
- Coulomb interaction

ことにより、アクセプタンスの効果、検出効率の効果をキャンセルできる

→測定したい<u>物理的相関のみ</u>を観測することができる

- ▲ そのためにはeventのcharacterizeが重要!
 - CentralityやZ-vertexが同じものを選ぶ

k_T dependence of Rout, Rside, Ros

centrality 20-30 %

- 0.2-0.3 GeV/c

----- 0.3-0.4 GeV/c

----- 0.5-0.7 GeV/c

Charged hadron v₂ and v₃ ratio with ESE cut

- v_n is measured with Event plane method
- Top 20% largest q₂, q₃ vector selection is applied
- v₂ is enhanced by 25% with large q₂ selection
- v₃ grows by 15% with large q₃ selection

v₃ (centrality dependence) with 20% step q₃ selection

 $q3\ 80-100\% \rightarrow +10 \sim +20\%$ Event Plane FMD A+C

 $q3\ 60-80\% \rightarrow +3\%$ $q_3: 0-20\%$
 $=\ \sqrt{q}3\ 40-60\% \rightarrow -5\%$ $q_3: 20-40\%$
 $=\ \sqrt{q}3\ 20-40\% \rightarrow -10\%$ $q_3: 40-60\%$
 $=\ q3\ 0-20\% \rightarrow -15 \sim -5\%$ $q_3: 60-80\%$
 $0\ 20\ 40$ $q_3: 80-100\%$

(%) • v3 modification is fargest in central and becomes smaller from central to peripheral

 $\mathbf{p}_{\mathsf{T}} \operatorname{dependence}^{10} \mathbf{p}_{\mathsf{T}}^{10} \mathbf{p}_{\mathsf$ ^(%)V3 I

@90

0

5

10

p_{_}(Ge)

$\begin{array}{c} \text{Ratio } \mathbf{O} f^{2}V_{3} \text{ with } \mathbf{q}_{3} \text{ selection } / v_{3} \text{ unbiased} \end{array}$

centrality(%)

$R_{out} R_{side}$ w.r.t. Ψ_3 with ESE(q_3 20% step)

- Enhancement(suppression) w/ q3 cut is much smaller than that w/ q2
 - Weak correlation between v3 and e3 final??
- Fit is not good in centrality 20-50% ?
- For smallest q2 selection(0-20%)
 - R_{side} has negative sign oscillation (similar to HBT w.r.t. Ψ_2)

Relative amplitude of HBT radii (3rd harmonics)

◆In centrality 0-5, 20-40% collisions, No explicit modification on R_{out} can be found
 ✓ Though the ratio of v₃ (q₃ selected / unbiased) is largest in centrality 0-5%
 ◆ R_{side} slightly changed with q3 selection, q3 0-20% could have positive value

v_3 v.s. Relative amplitude of HBT radii w.r.t. Ψ_3

► Rout and Rside ratio

Modification of q3 in 5-20% seems to be scaled with v3

v₂ (p_T dependence) for each 20% q₂ selection

Ratio of v_2 with q_2 selection / v_2 unbiased

Relative amplitude of HBT radii

- ► 6 centrality class
 - •0-5%
 - **5 10%**
 - **10-20%**
 - 20-30%
 - **30-40%**
 - 40-50%

Blast wave fit for π, K, p Spectra

★Fitting for pT spectra

- positive and negative particle
- ⊦ π, К, р
- 6 particles pT spectra (simultaneous)
 - pion
 - Kaon
 - proton

★ 2 Parameters

- Tf : Kinetic freeze out temperature
- ρ0 : Transverse rapidity
- ρ2 : 2nd order modulation
- ► **TO** : Freeze out time
- Δτ : Emission duration

★Positive

★ Negative

\star Fit function for spectra

 $\frac{dN}{p_T dp_T} = 2(2\pi)^{3/2} \tau_0 \Delta \tau m_T \int_0^{2\pi} d\phi_s \int_0^{\infty} r dr \,\Omega(r,\phi_s) \,I_0(\alpha) K_1(\beta)$

Blast wave fit for PID v₂

★ Fitting for pT dependence of π, K, p v2

pionKaon

proton

★4 Parameters

- Tf : Kinetic freeze out temperature
- ρ0 : Transverse rapidity
- ρ2 : 2nd order modulation
- ► **Rx**, **Ry** : Transverse size

★Fit function for v2

$$v_2(p_T, m) = \frac{\int_0^{2\pi} d\phi_p \int_0^\infty r dr \,\Omega(r, \phi_s) K_1(\beta) \cos(2\phi_b) I_2(\alpha)}{\int_0^{2\pi} d\phi_s \int_0^\infty r dr \,\Omega(r, \phi_s) \,I_0(\alpha) K_1(\beta)}$$

Blast wave fit for HBT radii

\mathbf{M} HBT radii relative to Ψ_2

★ 7 Parameters

- Tf : Kinetic freeze out temperature
- **ρ0** : Transverse rapidity
- ▶ **p2** : 2nd order modulation in transverse flow
- **Rx**, **Ry** : Transverse size of the source
- τ0 : Freeze out time
- ΔT : Emission duration

★ Fit function for HBT

1

$$\begin{array}{lll} \langle f(x) \rangle & = & \displaystyle \frac{\int d^4 x f(x) S(x,K)}{\int d^4 x S(x,K)} \\ \tilde{x}^{\mu} & = & \displaystyle x^{\mu} - \langle x^{\mu} \rangle, \end{array}$$

$$\begin{split} R_s^2 &= \frac{1}{2} (\langle \tilde{x}^2 \rangle + \langle \tilde{y}^2 \rangle) - \frac{1}{2} (\langle \tilde{x}^2 \rangle - \langle \tilde{y}^2 \rangle) \cos(2\phi_p) - \langle \tilde{x}\tilde{y} \rangle \sin(2\phi_p), \\ R_o^2 &= \frac{1}{2} (\langle \tilde{x}^2 \rangle + \langle \tilde{y}^2 \rangle) + \frac{1}{2} (\langle \tilde{x}^2 \rangle - \langle \tilde{y}^2 \rangle) \cos(2\phi_p) + \langle \tilde{x}\tilde{y} \rangle \sin(2\phi_p), \\ &- 2\beta_T (\langle \tilde{t}\tilde{x} \rangle \cos\phi_p + \langle \tilde{t}\tilde{y} \rangle \sin\phi_p) + \beta_T^2 \langle \tilde{t}^2 \rangle, \\ R_{os}^2 &= \langle \tilde{x}\tilde{y} \rangle \cos(2\phi_p) - \frac{1}{2} (\langle \tilde{x}^2 \rangle - \langle \tilde{y}^2 \rangle) \sin(2\phi_p) + \beta_T (\langle \tilde{t}\tilde{x} \rangle \sin\phi_p - \langle \tilde{t}\tilde{y} \rangle \cos\phi_p), \\ R_l^2 &= \langle \tilde{z}^2 \rangle - 2\beta_l \langle \tilde{t}\tilde{z} \rangle + \beta_l^2 \langle \tilde{t}^2 \rangle, \\ &= \langle \tilde{z}^2 \rangle, \end{split}$$

Fit by Blast wave model

Transverse momentum distribution (p_T spectra) and v_2 are used to reduce parameter.

- 1. Fit p_T spectra to obtain T_f and ρ_0
 - spectra data from PHENIX (PRC69,034909(2004))
- **2.** Fit v_2 and HBT radii for all k_T simultaneously - ρ_2 , R_x , R_y , τ_0 , $\Delta \tau$ are obtained.

Blast Wave parameters (comparison with PHENIX)

Tf, ρ0, Rx, Ry/Rx, τ0, Δτ are fitted with Polynomial2
ρ2 is fitted with Polynomial3

Blast Wave parameters (comparison with ALICE published)

Fully consistent within the systematic uncertainties

$$\langle \beta_T \rangle = \int_0^{2\pi} d\phi \int_0^1 dr \tanh\left(\left(\rho_0 + \rho_2 \cos\left(2\phi\right)\right) r^n\right) r \left(1 + 2s_2 \cos\left(2\phi\right)\right)$$
$$s_2 = \frac{1}{2} \frac{\left(\frac{R_y}{R_x}\right)^2 - 1}{\left(\frac{R_y}{R_x}\right)^2 + 1}$$

HBT relative to Ψ_n with ESE(q_n cut)

Spectra + Event shape engineering

Positive correlation between <v₂> and <p_T>

v₂ ratio with q₂ large(small) cut
Iarge q₂^{TPC} top10% (bottom10%)
Iarge q₂^{VZERO} top10% (bottom10%)

Initial v.s. final source eccentricity

- ▶ k_T : 0.2-1.5 GeV/c
- Final source eccentricity is strongly diluted with collective flow

E.P. resolution with qn cut

2nd harmonic oscillation amplitude of HBT radii

(P. Bozek, J. Phys. G**38**, 124097)

• Hydro calculation cannot reproduce $R^{2}_{out,2} / R^{2}_{side,0}$ small k_{T} dependence

♦N_{part} dependence of R²_{out,2} / R²_{side,0} is very similar though

- ★ R²_{out,2} / R²_{side,0} in lowest k_T is consistent but not in high k_T (under estimate)