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Introduction

String theory began as a hadron theory

After 40 years
string theory is back to Str. Int. with 
the idea of gague/gravity duality. 

Can we do something for QCD?

N=4 SYM has difference as much as 
similarity: SUSY, extra deg. of freedom

appeal to universality-> hydro.



Universality and  AdS/QCD

High temperature phase 
-> Broken SUSY -> Share more with QCD

a quantity in Hydrodynamics -> 
 Low frequency and Long wave length 

 As far as dual gravity is valid->

 perhaps, ads/qcd in medium is more 
relevant to qcd than in vacuum. 

1 Introduction

After the discovery of consistency of AdS/CFT [1–3] result and that of RHIC experiment

on the viscosity/entropy-density ratio [4–6], much attention has been drawn to the calcu-

lational scheme provided by string theory. Some attempt has been made to map the entire

process of RHIC experiment in terms of the gravity dual [7]. The way to include chemical

potential in the theory was figured out in [8,9]. Phases of these theories were also discussed

in D3/D7 setup [10–12] as well as in D4D8D8 [9].

More recently, it had been conjectured that the viscosity value of theories with gravity

dual may give a lower bound for the η/s = 1/4π for all possible liquid [13]. However, the

authors of [14] and [15] showed that if we consider the stringy correction to α′ order, the

viscosity bound is violated and causality is also [16] violated as a consequence (See also for

more recent paper [17]).

The α′ terms are also related to the (in)stability issues of black holes. The instability of

D-dimensional asymptotically flat Einstein-Gauss-Bonnet black holes has been discussed

by several authors [18, 19]. Their results show that for the gravitational perturbations

of Schwarzschild black holes in D = (from 5 to 11) Gauss-Bonnet gravity, the instability

occurs only for D = 5 and D = 6 cases at large value of α′ [19].

In this paper, we add charge together with the Gauss-Bonnet term, and calculate η/s

and consider the stability issue including the causality violation. We find that the viscosity

bound violation is not changed by the charge. However, we find that for large momenta

regime, there exists a new instability due to the charge effect. The linearized perturbation

has a negative frequency squared signaling an instability. We draw the phase diagram

relevant to the instability. We emphasize that the new instability present only if both

charge and Gauss-Bonnet term present.

The rest of the paper goes as follows. In section 2, to set up we give a briefly review on

the thermodynamic properties of Reissner-Nordström-AdS black brane solution in Gauss-

Bonnet gravity. In section 3, the Gauss-Bonnet correction to η/s is calculated via Kubo

formula and its charge dependence is given in an explicit form. In section 4, we study the

causality violation problem for charged black branes and reproduce the results found in

Ref. [16]. In section 5, we discuss the stability of Reissner-Nordström-AdS black branes in

Gauss-Bonnet gravity. Conclusions and discussions are presented in the last section.
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Plan

Hydrodynamics I: Green function and Kubo 
formula [archiv:0806.4460]

Hydrodynamics II: Metallic QGP
[archiv:0809.4541]

Baryons in finite chemical potential
[JHEP 0804:010,2008]



Hydrodynamics I:
         Transport coefficients

X. Ge, Y. Matsuo,  F. Shu,  T. Tsukioka(APCTP), archiv:0806.4460

Finite temperature (and density)
<-> (charged) black hole

Linear Response theory: 
Transport coefficients <- Kubo formula
<- zero frequency limit of G_R
    <- ads/cft boundary action. 



AdS R-N black hole

 Solution to the eq. of M:

the D3-branes, the D7-branes fill the AdS5 completely. The induced metric on the D7-

brane is identical to the AdS bulk metric [26]. This model corresponds to N = 4 SYM with

massless quarks. If we introduce the baryon charge at the boundary theory, its chemical

potential is identified as the tail of the U(1) gauge potential on the flavor brane [6,7]. (See

also [8–10,27,28] for later development.) We consider the phenomenological model taking

only AdS5 part and neglecting S5 part. Then there is no way to distinguish the bulk gauge

field and the brane field. The baryon charge and the R-charge have the same description

in terms of the U(1) gauge field living in the AdS5 space. A charged black hole (RN-AdS

black hole) is then induced by its back reaction. This corresponds to the N = 4 SYM in

finite temperature with finite baryon density. It is the case that we consider in this paper.

The action for the gauge field dual to the baryon current is given by the U(1) part of

the Dirac-Born-Infeld action∗

SD7 = − 1

4e2

∫
d5x

√
−g Tr (FmnFmn), (2.6)

where the gauge coupling constant e is given by

l

e2
=

NcNf

(2π)2
, (2.7)

with l the radius of the AdS space. Notice that the gauge field is that of the diagonal U(1)

of U(Nf ) flavor brane dynamics, which is dual to the baryon current at the boundary.

Together with the gravitation part, we arrive at the following action which is our starting

point:

S[gmn,Am] =
1

2κ2

∫
d5x

√
−g

(
R − 2Λ

)
− 1

4e2

∫
d5x

√
−gFmnFmn, (2.8)

where we denote the gravitation constant and the cosmological constant as κ2 = 8πG5 and

Λ, respectively. The U(1) gauge field strength is given by Fmn(x) = ∂mAn(x) − ∂nAm(x).

The gravitation constant is related to the gauge theory quantities by

l3

κ2
=

N2
c

4π2
. (2.9)

Suppose we have baryon charge Q. This should be identified to the source of U(1) charge

on the brane hence on the bulk. Then we can relate it to the parameter in RN black hole

solution by considering the full solution to the equation of motion,

Rmn − 1

2
gmnR + gmnΛ = κ2Tmn, (2.10)

∗ The indices m and n run through five-dimensional spacetime while µ and ν would be reserved for
four-dimensional Minkowski spacetime. Their spatial coordinates are labeled by i and j.
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where energy-momentum tensor Tmn(x) is given by

Tmn =
1

e2

(
FmkFnlg

kl − 1

4
gmnFklFkl

)
. (2.11)

An equation of motion for the gauge field Am(x) gives Maxwell equation,

∇mFmn =
1√
−g

∂m

(√
−ggmkgnl(∂kAl − ∂lAk)

)
= 0. (2.12)

Here we assumed that there is no electromagnetic source outside the black hole. One can

confirm that the following metric and gauge potential satisfy the equations of motion (2.10)

and (2.12),

ds2 =
r2

l2

(
− f(r)(dt)2 +

3∑

i=1

(dxi)2
)

+
l2

r2f(r)
(dr)2, (2.13a)

At = −Q

r2
+ µ, (2.13b)

with

f(r) = 1 − ml2

r4
+

q2l2

r6
, Λ = − 6

l2
,

if and only if q is related to the Q by

e2 =
2Q2

3q2
κ2. (2.14)

It should be noted that a ratio of the gauge coupling constant e2 to the gravitation constant

κ2 is
e2

κ2
=

Nc

Nf
l−2. (2.15)

Since the gauge potential At(x) must vanish at the horizon, the charge Q and the chemical

potential µ are related. The parameters m and q are the mass and charge of AdS space,

respectively. This is nothing but Reissner-Nordström-Anti-deSitter (RN-AdS) background

in which we are interested throughout this paper.

The horizons of RN-AdS black hole are located at the zero for f(r)†,

f(r) = 1 − ml2

r4
+

q2l2

r6
=

1

r6

(
r2 − r2

+

)(
r2 − r2

−

)(
r2 − r2

0

)
, (2.16)

† In order to define the horizon, the charge q must satisfy a relation q4 ≤ 4m3l2/27.
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Thermodynamics

temperature, entropy, energy

pressure, charge density and chemical pot.

where their explicit forms of the horizon radiuses are given by

r2
+ =

(
m

3q2

(
1 + 2 cos

(θ

3
+

4

3
π
)))−1

, (2.17a)

r2
− =

(
m

3q2

(
1 + 2 cos

(θ

3

)))−1

, (2.17b)

r2
0 =

(
m

3q2

(
1 + 2 cos

(θ

3
+

2

3
π
)))−1

, (2.17c)

with

θ = arctan

(
3
√

3q2
√

4m3l2 − 27q4

2m3l2 − 27q4

)
,

and satisfy a relation r2
+ + r2

− = −r2
0. The positions expressed by r+ and r− correspond to

the outer and the inner horizon, respectively. It will be useful to notice that the charge q

can be expressed in terms of θ and m by

q4 =
4m3l2

27
sin2

(
θ

2

)
.

The outer horizon takes a value in
√

m

3
l ≤ r2

+ ≤
√

ml,

where the upper bound and the lower bound correspond to the case for q = 0 and the

extremal case, respectively.

We shall give various thermodynamic quantities of RN-AdS black hole [25, 26]. The

temperature is defined from the conical singularity free condition around the horizon r+,

T =
r2
+f ′(r+)

4πl2
=

r+

πl2

(
1 − 1

2

q2l2

r6
+

)
≡ 1

2πb

(
1 − a

2

)
, (> 0), (2.18)

where we defined the parameters a and b by

a ≡ q2l2

r6
+

, b ≡ l2

2r+
. (2.19)

In the limit q → 0, these parameters go to

a → 0, b → l3/2

2m1/4
,

and the temperature becomes

T → T0 =
m1/4

πl3/2
. (2.20)
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The entropy density s, the energy density ε, the pressure p, the chemical potential µ and

the density of physical charge ρ can be also computed as

s =
2πr3

+

κ2l3
=

πl3

4κ2b3
, (2.21)

ε =
3m

2κ2l3
=

3l3

32κ2b4

(
1 + a

)
, (2.22)

p =
ε

3
, (2.23)

µ =
Q

r2
+

, (2.24)

ρ =
2Q

e2l3
. (2.25)

3 Perturbations in RN-AdS Background

In RN-AdS background, we study small perturbations of the metric gmn(x) and the gauge

field Am(x),

gmn ≡ g(0)
mn + hmn,

Am ≡ A(0)
m + Am,

(3.1)

where the background metric g(0)
mn(x) and the background gauge field A(0)

m (x) are given

in (2.13a) and (2.13b), respectively. In the metric perturbation, one can define a inverse

metric as

gmn = g(0)mn − hmn + O(h2),

and raise and lower indices by using the background metric g(0)
mn(x) and g(0)mn(x).

Now we shall consider a linearized theory of the symmetric tensor field hmn(x) and the

vector field Am(x) propagating in RN-AdS background. In the first order of hmn(x) and

Am(x), the Einstein equation (2.10) can be written as

R(1)
mn − 1

2
g(0)

mnR
(1) − 1

2
hmnR(0) + hmnΛ = κ2T (1)

mn. (3.2)

In the expression above, the scalar curvature R(0)(x) is constructed by using the background

metric g(0)
mn(x) and the following tensors are newly defined:

R(1)
mn =

1

2

(
∇k∇mhn

k + ∇k∇nhm
k −∇k∇khmn −∇m∇nh

)
,

R(1) = g(0)klR(1)
kl − hklR(0)

kl
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Perturbations around RN

perturbed Eintein eq. 

The entropy density s, the energy density ε, the pressure p, the chemical potential µ and

the density of physical charge ρ can be also computed as

s =
2πr3

+

κ2l3
=

πl3

4κ2b3
, (2.21)

ε =
3m

2κ2l3
=

3l3

32κ2b4

(
1 + a

)
, (2.22)

p =
ε

3
, (2.23)

µ =
Q

r2
+

, (2.24)

ρ =
2Q

e2l3
. (2.25)

3 Perturbations in RN-AdS Background

In RN-AdS background, we study small perturbations of the metric gmn(x) and the gauge

field Am(x),

gmn ≡ g(0)
mn + hmn,

Am ≡ A(0)
m + Am,

(3.1)

where the background metric g(0)
mn(x) and the background gauge field A(0)

m (x) are given

in (2.13a) and (2.13b), respectively. In the metric perturbation, one can define a inverse

metric as

gmn = g(0)mn − hmn + O(h2),

and raise and lower indices by using the background metric g(0)
mn(x) and g(0)mn(x).

Now we shall consider a linearized theory of the symmetric tensor field hmn(x) and the

vector field Am(x) propagating in RN-AdS background. In the first order of hmn(x) and

Am(x), the Einstein equation (2.10) can be written as

R(1)
mn − 1

2
g(0)

mnR
(1) − 1

2
hmnR(0) + hmnΛ = κ2T (1)

mn. (3.2)

In the expression above, the scalar curvature R(0)(x) is constructed by using the background

metric g(0)
mn(x) and the following tensors are newly defined:

R(1)
mn =

1

2

(
∇k∇mhn

k + ∇k∇nhm
k −∇k∇khmn −∇m∇nh

)
,

R(1) = g(0)klR(1)
kl − hklR(0)

kl

8

The entropy density s, the energy density ε, the pressure p, the chemical potential µ and

the density of physical charge ρ can be also computed as

s =
2πr3

+

κ2l3
=

πl3

4κ2b3
, (2.21)

ε =
3m

2κ2l3
=

3l3

32κ2b4

(
1 + a

)
, (2.22)

p =
ε

3
, (2.23)

µ =
Q

r2
+

, (2.24)

ρ =
2Q

e2l3
. (2.25)

3 Perturbations in RN-AdS Background

In RN-AdS background, we study small perturbations of the metric gmn(x) and the gauge

field Am(x),

gmn ≡ g(0)
mn + hmn,

Am ≡ A(0)
m + Am,

(3.1)

where the background metric g(0)
mn(x) and the background gauge field A(0)

m (x) are given

in (2.13a) and (2.13b), respectively. In the metric perturbation, one can define a inverse

metric as

gmn = g(0)mn − hmn + O(h2),

and raise and lower indices by using the background metric g(0)
mn(x) and g(0)mn(x).

Now we shall consider a linearized theory of the symmetric tensor field hmn(x) and the

vector field Am(x) propagating in RN-AdS background. In the first order of hmn(x) and

Am(x), the Einstein equation (2.10) can be written as

R(1)
mn − 1

2
g(0)

mnR
(1) − 1

2
hmnR(0) + hmnΛ = κ2T (1)

mn. (3.2)

In the expression above, the scalar curvature R(0)(x) is constructed by using the background

metric g(0)
mn(x) and the following tensors are newly defined:

R(1)
mn =

1

2

(
∇k∇mhn

k + ∇k∇nhm
k −∇k∇khmn −∇m∇nh

)
,

R(1) = g(0)klR(1)
kl − hklR(0)

kl

8

The entropy density s, the energy density ε, the pressure p, the chemical potential µ and

the density of physical charge ρ can be also computed as

s =
2πr3

+

κ2l3
=

πl3

4κ2b3
, (2.21)

ε =
3m

2κ2l3
=

3l3

32κ2b4

(
1 + a

)
, (2.22)

p =
ε

3
, (2.23)

µ =
Q

r2
+

, (2.24)

ρ =
2Q

e2l3
. (2.25)

3 Perturbations in RN-AdS Background

In RN-AdS background, we study small perturbations of the metric gmn(x) and the gauge

field Am(x),

gmn ≡ g(0)
mn + hmn,

Am ≡ A(0)
m + Am,

(3.1)

where the background metric g(0)
mn(x) and the background gauge field A(0)

m (x) are given

in (2.13a) and (2.13b), respectively. In the metric perturbation, one can define a inverse

metric as

gmn = g(0)mn − hmn + O(h2),

and raise and lower indices by using the background metric g(0)
mn(x) and g(0)mn(x).

Now we shall consider a linearized theory of the symmetric tensor field hmn(x) and the

vector field Am(x) propagating in RN-AdS background. In the first order of hmn(x) and

Am(x), the Einstein equation (2.10) can be written as

R(1)
mn − 1

2
g(0)

mnR
(1) − 1

2
hmnR(0) + hmnΛ = κ2T (1)

mn. (3.2)

In the expression above, the scalar curvature R(0)(x) is constructed by using the background

metric g(0)
mn(x) and the following tensors are newly defined:

R(1)
mn =

1

2

(
∇k∇mhn

k + ∇k∇nhm
k −∇k∇khmn −∇m∇nh

)
,

R(1) = g(0)klR(1)
kl − hklR(0)

kl

8
= ∇k∇lh

kl −∇k∇kh − hklR(0)
kl ,

T (1)
mn =

1

e2

(
− F (0)

mkF
(0)
nl hkl +

1

2
g(0)

mnF
(0)
kp F (0)

l
phkl − 1

4
hmnF (0)

kl F (0)kl

+F (0)
mkFn

k + F (0)
nk Fm

k − 1

2
g(0)

mnF
(0)
kl F kl

)
,

where the Ricci tensor R(0)
mn(x), the covariant derivative and the field strength F (0)

mn(x)

are defined through the background metric g(0)
mn(x) and the gauge field A(0)

m (x). We de-

note a trace part of the metric and a field strength for the perturbative parts as h(x) ≡
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We shall work in the hrm(x) = 0 and Ar(x) = 0 gauges and use the Fourier decompo-

sition

hµν(t, z, r) =

∫
d4k

(2π)4
e−iωt+ikzhµν(k, r),

Aµ(t, z, r) =

∫
d4k

(2π)4
e−iωt+ikzAµ(k, r),

where we choose the momenta which are along the z-direction. In this case, one can

categorize the metric perturbations to the following three types by using the spin under

the O(2) rotation in (x, y)-plane [12]:

• vector type: hxt "= 0, hxz "= 0, (others) = 0(
equivalently, hyt "= 0, hyz "= 0, (others) = 0

)

• tensor type: hxy "= 0, hxx = −hyy "= 0, (others) = 0

• scalar type: htz "= 0, htt "= 0, hxx = hyy "= 0, and hzz "= 0, (others) = 0

We consider the first two types in this paper. The scalar type perturbation would be

studied elsewhere.

3.1 Vector type perturbation

In this subsection, we study the vector type perturbation in RN-AdS background. From

explicit calculation, one can show that only x-component of the gauge field Ax(x) could

participate in the linealized perturbative equations of motion. Thus independent variables

are

hxt(x) "= 0, hxz(x) "= 0, Ax(x) "= 0, (others) = 0.

We start by introducing new field valiables, hx
t (r) = g(0)xxhxt(r) = (l2/r2)hxt(r) and

hx
z(r) = g(0)xxhxz(r) = (l2/r2)hxz(r). Nontrivial equations in the Einstein equation (3.2)

appear from (t, x), (r, x) and (x, z) components, respectively:

0 = hx
t
′′ +

5

r
hx

t
′ − l4

r4f

(
ωkhx

z + k2hx
t

)
+

6q2l2

Qr5
A′

x, (3.6a)
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u = r2
+/r2

horizon and the boundary are located at

B(u) ≡ Ax(u)

µ
=

l4

4Qb2
Ax(u) where

our basic equations (3.6a)-(3.6c) and (3.7) are rewritten i

0 = hx
t
′′ − 1

u
hx

t
′ − b2

uf

(
ωkhx

z + k2hx
t

)
− 3auB′,

0 = kfhx
z
′ + ωhx

t
′ − 3aωuB,

0 = hx
z
′′ +

(u−1f)′

u−1f
hx

z
′ +

b2

uf 2

(
ω2hx

z + ωkhx
t

)
,

0 = B′′ +
f ′

f
B′ +

b2

uf 2

(
ω2 − k2f

)
B − 1

f
hx

t
′,

f(u) = (1 − u)(1 + u − au2)



Master equations

Similarly tensor type has simple eq.

0 = kfhx
z
′ + ωhx

t
′ +

6q2l2ω

Qr5
Ax, (3.6b)

0 = hx
z
′′ +

(r5f)′

r5f
hx

z
′ +

l4

r4f 2

(
ωkhx

t + ω2hx
z

)
, (3.6c)

where the prime implies the derivative with respect to r. In the set of equations, the

equations (3.6a) and (3.6b) imply (3.6c). On the other hand, in the Maxwell equation

(3.3), the x-component gives a nontrivial contribution,

0 = A′′
x +

(r3f)′

r3f
A′

x +
l4

r4f 2

(
ω2 − k2f

)
Ax +

2Q

r3f
hx

t
′. (3.7)

Taking the limit in which the charge q goes to zero, the metric and the gauge perturbations

are completely decoupled.

We now look for solutions of our set of equations. First of all, from the equations (3.6a)

and (3.6b), we can obtain a second order differential equation for hx
t
′(r) and Ax(r),

0 = hx
t
′′′ +

(r9f)′

r9f
hx

t
′′ +

1

r4f

(
5(r3f)′ +

l4

f

(
ω2 − k2f

))
hx

t
′

+
6q2l2

Q

(A′′
x

r5
+

(r−1f)′

r4f
A′

x +
l4ω2

r9f 2
Ax

)
. (3.8)

Together with the equation of motion (3.7), we treat hx
t
′(r) and Ax(r) as independent

variables. Having the solutions for these, one can get one for hx
z
′(r) by using the equation

(3.6b). In order to solve these equations, we find it is useful to introduce linear combinations

of the variables

Φ± ≡ −8b4

l8
r5hx

t
′ +

(
− 3al4

4Qb2
+

C±

Q
r2

)
Ax, (3.9)

with constants

C± = (1 + a) ±
√

(1 + a)2 + 3ab2k2,

so that we can obtain second order ordinary differential equations in terms of these new

variables. In fact, the equations of motion (3.7) and (3.8) could be rearranged as

0 = Φ±
′′ +

(r−1f)′

r−1f
Φ±

′ +
l4

r4f 2

(
ω2 − k2f

)
Φ± − l8C±

4b4r6f
Φ±. (3.10)

In the chargeless limit, the two equations of motion (3.10) for Φ+(r) and Φ−(r) give de-

coupled ones for Ax(r) and hx
t
′(r), respectively.

We will consider these equations of motion in low frequency limit so-called hydrody-

namic regime. In the hydrodynamic regime we could obtain the diffusion pole and the

thermal conductivity from retarded Green functions.
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hxy(x) != 0, hxx(x) = −hyy(x), (others) = 0.

0 = hx
y
′′ +

(r5f)′

r5f
hx

y
′ +

l4

r4f 2

(
ω2 − k2f

)
hx

y .



Diffusion pole

Infalling BC at horizon

perturbative solution near boundary

Here the prime now means the derivative with respect to u. The equation (3.10) may be

also written down as

0 = Φ±
′′ +

(u2f)′

u2f
Φ±

′ +
b2

uf 2

(
ω2 − k2f

)
Φ± − C±

f
Φ±, (4.2a)

for

Φ± =
1

u
hx

t
′ − 3aB +

C±

u
B. (4.2b)

Getting the solution for Φ±(u), one can access to solutions for hx
t
′(u) and B(u),

hx
t
′ = uΦ− +

3a

C+ − C−

u2
(
Φ+ − Φ−

)
− C−

C+ − C−

u
(
Φ+ − Φ−

)
, (4.3a)

B =
1

C+ − C−

u
(
Φ+ − Φ−

)
. (4.3b)

The constants C± could be expanded in this regime,

C+ = 2(1 + a) +
3ab2

2(1 + a)
k2 + O(k4),

C− = − 3ab2

2(1 + a)
k2 + O(k4).

(4.4)

First, let us consider the equation for Φ−(u). Following the usual way to solve differ-

ential equations, we impose a solution as Φ−(u) = (1− u)νF−(u) where F−(u) is a regular

function at the horizon u = 1. Substituting this form into the equation of motion, one can

fix the parameter ν as ν = ±iω/(4πT ) where T is the temperature defined by the equation

(2.18). We here choose

ν = −i
ω

4πT
,

as the incoming wave condition.

Now we are in the position to solve the equation of motion in the hydrodynamic regime.

We start by introducing the following series expansion with respect to small ω and k:

F−(u) = F0(u) + ωF1(u) + k2G1(u) + O(ω2, ωk2), (4.5)

where F0(u), F1(u) and G1(u) are determined by imposing suitable boundary conditions.

In order to do the perturbative analysis, it might be convenient to rewrite the equation

(4.2a) for Φ−(u) as,

0 =
(
u2(1 − u)(1 + u − au2)F−

′
)′
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+iω
2b

2 − a
u2(1 + u − au2)F ′

− + iω
b

2 − a
u(2 + 3u − 4au2)F−

+ω2 b2

(2 − a)2

u

1 + u − au2

×
(
(2 − a)2 + (1 − a)(3 − a)u + (1 − 4a + a2)u2 − a(2 − a)u3 + a2u4

)
F−

−k2b2u
(
1 − 3a

2(1 + a)
u
)
F−. (4.6)

The solution can be then obtained recursively∗. The result is as follows:

F0(u) = C, (const.), (4.7a)

F1(u) = iCb

{
1 + 2a − 2a2

2
√

1 + 4a(2 − a)

(
log






1 − 1 − 2au√
1 + 4a

1 − 1 − 2a√
1 + 4a




 − log






1 +
1 − 2au√

1 + 4a

1 +
1 − 2a√
1 + 4a






)

+1 − 1

u
+

1

2(2 − a)
log

(1 + u − au2

2 − a

)}
, (4.7b)

G1(u) =
Cb2

2(1 + a)

(
− 1 +

1

u

)
. (4.7c)

All of the solutions should be regular at the horizon u = 1 and the functions F1(u) and

G1(u) should be vanished there. The constant of integration C will be estimated later.

Next, we shall study the equation for Φ+(u). It might be useful to introduce new

variable Φ̃+(u),

Φ+ ≡
(
− 3a

2(1 + a)
+

1

u

)
Φ̃+. (4.8)

In terms of new variable, the equation of motion (4.2a) for Φ+(u) becomes

0 = Φ̃′′
+ +

((
1 − 3a

2(1 + a)
u
)2

f
)′

(
1 − 3a

2(1 + a)
u
)2

f
Φ̃′

+ +
b2

uf 2

(
ω2 − k2f

(
1 +

3a

2(1 + a)
u
))

Φ̃+. (4.9)

Assuming again Φ̃+(u) = (1 − u)νF̃ (u) where F̃ (u) is a regular function at u = 1, the

singularity might be extracted. The equation of motion (4.9) becomes

0 =
((

1 − u
)(

1 + u − au2
)(

1 − 3a

2(1 + a)
u
)2

F̃ ′
)′

+2iω
b

2 − a

(
1 + u − au2

)(
1 − 3a

2(1 + a)
u
)2

F̃ ′

∗ The derivation of the solutions is given in Appendix A.
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On-shell action

 

Others are similar.

We evaluate the equations above at the boundary,

lim
u→0

(
u2Φ′

± − C±uB′
)

= b2
(
ωk(hx

z)
0 + k2(hx

t )
0
)
− C±(B)0, (4.13)

so that we may fix the constants C and C̃ from ∓ parts, respectively,

C =
b
(
ωk(hx

z)
0 + k2(hx

t )
0
)

+
3ab

2(1 + a)
k2(B)0

iω − b

2(1 + a)
k2

, (4.14a)

C̃ =
−b2

(
ωk(hx

z)
0 + k2(hx

t )
0
)

+
(
2(1 + a) +

3ab2

2(1 + a)
k2

)
(B)0

1 + ωH̃(0) + k2J̃(0)
, (4.14b)

where we used the obtained solutions Φ±(u) and the relation (4.3b) for B′(u). It should

be noted that the boundary value of uB′(u) is vanished. In the equation (4.14a), one can

see the existence of the hydrodynamic pole in the complex ω-plane.

Now we proceed to calculate the Minkowskian correlators. For the vector type pertur-

bation, the on-shell action (3.5) becomes

S[hx
t , h

x
z , B] =

l3

32κ2b4

∫
d4k

(2π)4

{
1

u
hx

t (−k, u)hx
t
′(k, u) − 1

u2
hx

t (−k, u)hx
t (k, u)

−f(u)

u
hx

z(−k, u)hx
z
′(k, u) +

f(u)

u2
hx

z(−k, u)hx
z(k, u)

−3af(u)B(−k, u)
(
B′(k, u) − 1

f(u)
hx

t (k, u)
)}∣∣∣∣

u=1

u=0

.

(4.15)

Using the obtained solutions, we can lead the following relations between the radial deriva-

tive of the fields and their boundary values near the boundary u = ε:

hx
t
′(ε) = −b2

(
ωk(hx

z)
0 + k2(hx

t )
0
)

+
ε

iω − b

2(1 + a)
k2

{
b
(
ωk(hx

z)
0 + k2(hx

t )
0
)

+ 3iaω(B)0 + O(ω2k, ωk2)

}

+O(ε2), (4.16a)

hx
z
′(ε) = b2

(
ω2(hx

z)
0 + ωk(hx

t )
0
)

− ε

iω − b

2(1 + a)
k2

{
b
(
ω2(hx

z)
0 + ωk(hx

t )
0
)

+
3ab

2(1 + a)
ωk(B)0 + O(ω2k, ωk2)

}
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.

(4.15)

Using the obtained solutions, we can lead the following relations between the radial deriva-

tive of the fields and their boundary values near the boundary u = ε:

hx
t
′(ε) = −b2

(
ωk(hx

z)
0 + k2(hx

t )
0
)

+
ε

iω − b

2(1 + a)
k2

{
b
(
ωk(hx

z)
0 + k2(hx

t )
0
)

+ 3iaω(B)0 + O(ω2k, ωk2)

}

+O(ε2), (4.16a)

hx
z
′(ε) = b2

(
ω2(hx

z)
0 + ωk(hx

t )
0
)

− ε

iω − b

2(1 + a)
k2

{
b
(
ω2(hx

z)
0 + ωk(hx

t )
0
)

+
3ab

2(1 + a)
ωk(B)0 + O(ω2k, ωk2)

}
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{
b
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(
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0 + k2(hx

t )
0
)

+ i
3a
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ω(B)0
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(
iω − b

2(1 + a)
k2

) (2 − a)2b

4(1 + a)2
ω(B)0 + O(ω2k2, k4)
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(
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)
log ε + O(ε). (4.16c)

By using the relation (2.4) and the definition (2.5), we can read off the correlators in the
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l3
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(
k2
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)
, (4.17a)
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16κ2b3

(
ωk

iω − Dk2

)
, (4.17b)
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l3

16κ2b3
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ω2
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)
, (4.17c)
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Gx x(ω, k) =
3al

4(1 + a)b2e2

(
iω

iω − Dk2

)
− (2 − a)2l

8(1 + a)2be2
iω, (4.17f)

where we subtracted the contact terms. In the final expression above we rescaled the gauge

field (B)0 to the original one (Ax)0 =
4Qb2

l4
(B)0 and raised and lowered the indices by using

the flat Minkowski metric ηµν = diag(−, +, +, +) in the four-dimensional boundary theory.

Taking the limit in which the charge q goes to zero, the results coincide with the known

ones in [12]. In this limit, the correlators (4.17d) and (4.17e) vanish, while the correlator
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same interesting structure was found in the single (1, 0, 0) R-charged black hole [17]. The

constant D is the diffusion constant

D =
b

2(1 + a)
=

1

4

(
m5/3

3q2

(
1 + 2 cos

(θ

3
+

4

3
π
)))− 3

2

, (4.18)

with

θ = arctan

(
3
√

3q2
√

4m3l2 − 27q4

2m3l2 − 27q4

)
.
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  diffusion const.

 

All of the correlators in the vector type perturbation exhibit a diffusion pole. The behavior

of the diffusion constant is drawn as a function of the charge q and the mass m in Figure

1 and as a function of the charge q and the temperature T in Figure 2. In the chargeless

Figure 1: D vs. q and m (l = 1) Figure 2: D vs. q and T (l = 1)

limit, the diffusion constant becomes

D → D0 =
1

4πT0
,

where the temperature T0 is given in (2.20).

5 Shear Viscosity in Hydrodynamic Regime

In this section, we solve the equation of motion (3.11) in the hydrodynamic regime and

obtain the shear viscosity. We could also see the hydrodynamic relation and the formulation

of the thermal conductivity.

After changing the coordinate r to u = r2
+/r2, the equation (3.11) can be rewritten as

0 = hx
y
′′ +

(u−1f)′

u−1f
hx

y
′ +

b2

uf 2

(
ω2 − k2f

)
hx

y , (5.1)

with

f(u) = (1 − u)(1 + u − au2),
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shear Viscosity

 Kubo formula 

Green functions 
for tensor pert. 

Shear viscosity 

Taking the limit q → 0, the solution recovers the result in [12]. The solution of hx
x(u) is

the same form as hx
y(u).

Let us evaluate the Minkowskian correlators. The relevant part of the metric pertur-

bation in the on-shell action (3.5) becomes

S[hx
y , h

x
x, h

x
y ] = − l3

32κ2b4

∫
d4k

(2π)4

{
f(u)

u
hx

y(−k, u)hx
y
′(k, u) − f(u)

u2
hx

y(−k, u)hx
y(k, u)

+
f(u)

u
hx

x(−k, u)hx
x
′(k, u) − f(u)

u2
hx

x(−k, u)hx
x(k, u)

}∣∣∣∣
u=1

u=0

.

(5.7)

Near the boundary u = ε, using the perturbative solution for hx
y(u), we can obtain

hx
y
′(ε) = εb

(
iω + bk2

)
(hx

y)
0 − b2k2(hx

y)
0 + O(ω2, ωk2). (5.8)

The same relation for hx
x(u) might be satisfied. Therefore we can read off the correlation

functions from the on-shell action (5.7),

Gxy xy(ω, k) = Gxx xx(ω, k) = Gyy yy(ω, k)

= − l3

16κ2b3

(
iω + bk2

)
, (5.9)

where we subtract contact terms.

The result above can be used to estimate the shear viscosity η via Kubo formula,

η = − lim
ω→0

Im(G(ω, 0))

ω
=

l3

16κ2b3
. (5.10)

Therefore we can conclude the following relation between the shear viscosity η and the

entropy density s which is given in the equation (2.21):

η

s
=

1

4π
. (5.11)

The behavior of the shear viscosity is drawn as a function of the charge q and the mass m

in Figure 3 and as a function of the charge q and the temperature T in Figure 4.

In hydrodynamics, the following relation is held:

D =
η

ε + p
, (5.12)

where ε and p are the energy density and the pressure defined in (2.22) and (2.23), respec-

tively. Using the obtained diffusion constant (4.18), the shear viscosity could be calculated.

We can confirm the result coincides with (5.10) which was obtained from Kubo formula.
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we can rewrite these in covariant form,

∂µT µν
(0) = 2

√
3Q

e

g
Fµν

extuµ (3.18)

∂µJµ
(0) = 0 .

Since there is a derivative, these are exact first order (non)conservation equations. The right

hand side is energy and momentum inflow sourced by the external fields. When external

fields are absent, we obtain the usual fluid dynamics system with conserved current. We

expect that the relation

∂µT µν = eFµν
extJµ , ∂µJµ = 0 , (3.19)

holds to all order.

We know the asymptotic forms of metric and gauge fields. This information is enough

to calculate the first order boundary stress-energy tensor and the current. Using our first

order metric and equation (2.17), we can find the first order stress-energy tensor

Tµν = 2M(ηµν + 4uµuν) − 2r3
+σµν := P (ηµν + 4uµuν) − 2ησµν , (3.20)

from which we can read off the viscosity η = r3
+. By restoring 1/(16πG) = N2

c /8π2, which

was set to be 1, we get

η =
N2

c

8π2
r3
+ =

πN2
c T 3

8





1

2
+

√

1

4
+

1

6

(

µ

gπT

)2




3

. (3.21)
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The thermal conductivity κT can be also computed from the Green function by using

Kubo formula [17],

κT = −(ε + p)2

ρ2T
lim
ω→0

Im(G(ω, 0))

ω
, (5.13)

where the density of physical charge ρ is given by (2.25). Here we can use the retarded

Green function Gx x(ω, 0) given by (4.17f) as G(ω, 0). Thus we obtain

κT = 2π2

(
e2l2

κ2

)
ηT

µ2
= 2π2 Nc

Nf

ηT

µ2
. (5.14)

The behavior of the thermal conductivity κT is drawn as a function of the charge q and

the mass in Figure 5 and as a function of the charge q and the temperature T in Figure 6.

6 Conclusions and Discussions

In this paper we considered holographic QCD in the presence of the baryon density by

introducing the bulk-filling branes. We use RN-AdS black hole geometry as the gravity

dual of such system. We have seen the diffusion pole structure in vector type perturbation.

It is worth mentioning that the correlator of Maxwell fields in the vector mode Gx x(ω, k)

has the diffusion pole unlike the charge free case. The transport coefficients have been

calculated in holographic hydrodynamics and their temperature and density dependence

was demonstrated.

The diffusion constant decreases as charge increases for fixed temperature. Physically,

this implies that the fluid is less diffusible for large baryon density. By calculating the shear

viscosity analytically, we showed that the shear viscosity η and the entropy density s satisfy

the universal ratio (η/s) = 1/(4π) which has been originally suggested in [1]. For fixed

temperature, the fluid becomes thicker as the charge increases. We have also seen that the

diffusion constant and the shear viscosity satisfy the suitable relation for hydrodynamics.

The calculation of the thermal conductivity shows that it satisfies (an analogue of) the

Wiedemann-Franz low.

It is very interesting to study the pole structure of scalar type as well as vector type

of gravitational perturbations. Also it is important to carry out higher order calculations.

Such result will be useful to get the higher order transport coefficients in the presence of

the conserved current. We will report on these issues in the forthcoming publications.

In our interpretation, the fluctuations of bulk-filling branes are regarded as master fields

of the mesons. Near the horizon, the tension of the brane is zero due to the metric factor
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viscosity  

Figure 3: η vs. q and m (κ = l = 1) Figure 4: η vs. q and T (κ = l = 1)

Figure 5: κT vs. q and m (κ = l = 1) Figure 6: κT vs. q and T (κ = l = 1)
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Thermal conductivity 

Figure 3: η vs. q and m (κ = l = 1) Figure 4: η vs. q and T (κ = l = 1)

Figure 5: κT vs. q and m (κ = l = 1) Figure 6: κT vs. q and T (κ = l = 1)
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Charged black hole & baryon density: 
archiv:0707.2919, SJS

Consider a D-brane that fills the whole 
space. then the response of the metric to 
the charge is the same whether it is R-
charge or baryon charge. 

Unique minimal coupling between Maxwell & 
Einstein fields. 

 Therefore we can interpret the the charge 
of the RN black hole as the baryon charge 
density.



Hydrodynamics II: 
archiv:0809.4521,   Hur+Kim+SJS

Einstein eq. in the bulk 
<-> Fluid dynamics in the boundary. 

This  method yields: 

where we have used r+ = πT
2

(

1 +
√

1 + 2
3 (µ/gπT )2

)

. In addition, we can also calculate

the first order boundary current from (2.19). The current is

Jµ = Jµ
(0) + Jµ

(1) (3.22)

Jµ
(1) =

1

g

{

−2
√

3Q
jβ (r+)

r4
+

uλ∂λuµ +

(

−2
√

3Q
jQ (r+)

r4
+

−
√

3

r+

)

uλF (Q)
λ

µ

+

(

−2
√

3Q
jF (r+)

r4
+

+
e

g
r+

)

uλF ext
λ

µ

}

, (3.23)

where the jβ(r+), jQ(r+) and jF (r+) are values of each function at the horizon, which can

be read from (B.16) as follows

jβ (r+)

r4
+

=
2
(

2r6
+ + Q2

)

8Mr3
+

,
jQ (r+)

r4
+

= −
Q
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3Q
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. (3.24)

To find physical quantities, we need to change the above equation into familiar form. Using

(3.18) and the temperature of the black hole, we can obtain the final expression of the

current which contains dissipative current and contribution from the external field. After

some algebra as summarized in the appendix C, the expression turns out to be simplified

and given by

Jµ
(1) = −

π2T 3r7
+

4g2M2
Pµν∂ν

µ

T
+

π2T 2r7
+

4g2M2
uλeF ext

λ
µ , (3.25)

:= −κPµν∂ν
µ

T
+

σ

e
uλF ext

λ
µ , (3.26)

where 1/e in σ/e is inserted to read off the electric conductivity from the electric current

eJ rather than the number current J . See appendix A.

Now the coefficient of thermal conductivity κ and the electrical conductivity are given

by

κ =
π2T 3r7

+

4g2M2
, σ =

π2e2T 2r7
+

4g2M2
. (3.27)

To see that the second one is actually the electric conductivity, we notice that Jµ
ext =

σuλF ext
λ

µ becomes in non-relativistic limit Jext = σ(E + v ×B) with the σ given above. It

is easy to show that κ can be also written as

κ =
r+

4g2

(2 − a)2

(1 + a)2
, with a = Q2/r6

+ (3.28)

so that our result agrees precisely with that of [22], which was obtained from the Kubo

formula. Our result of conductivity goes to the known result in [24, 25] for zero charge case
3. The relation between the thermal and heat conductivity, so called Wiedermann-Franz

law:

κ = σT/e2, (3.29)

3The result is different by a constant factor of π.
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Consistency bet. I and II

From the Hydro I ( Kubo formula)
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Wiedermann-Franz law 

This indicates the Metallic property of sQGP
 

Can we measure the conductivity of sQGP?

is manifest in our case with Lorentz number 1/e2. Considering the complication of the

definition of temperature in the charged black hole and also the difference in the origin

of two terms, it is rather surprising to have such similar and simple recombination such

that Tσ and κ is proportional to each other. Using 2M = r4
+(1 + µ2/(3g2r2

+)) and r+ =

πT (1 +
√

1 + 2(µ/gπT )2/3)/2, we can express κ/T 2 and σ/T as a function of µ/gT only:

κ

T 2
=

σ

Te2
=

2π2

g2

1 +
√

1 + 2
3( µ

gπT )2

(

1 − 3
√

1 + 2
3( µ

gπT )2
)2 (3.30)

Fig. 1 shows this as a function of µ/gT .

We can also calculate the thermal conductivity,

κT =

(

ε + P

ρT

)2

κ = 4π2 ·
g2

16πG
·
ηT

µ2
. (3.31)

Notice that 1
16πG = N2

c

8π2 and g2

16πG is 1 and Nc/2Nf for R-charge and Baryon charge respec-

tively [21].

4. Discussion

We use gauge/gravity duality to determine the structure of the fluid dynamics in the pres-

ence of the conserved current and calculated thermal conductivity as well as the electrical

conductivity in the presence of the the external electric field. Since the dual of the par-

ticle number can regarded as the local charge of the Maxwell field in the bulk, we used

the charged black holes in AdS space. For our purpose, the first order in the derivative

expansion.

While the determination of the current especially the dissipative part is of highly

interesting, going second order or higher order is less interesting from the experimental

point of view: what RHIC experiment discovered is that we should neglect the dissipation

part almost completely. This perfect liquid behavior is a hall mark of the RHIC experiment.

However, LHC experiment may show different behavior due to its much higher collision

energy scale. Therefore calculating the transport coefficients may be of some importance

for future experiment. It would be also interesting to calculate the similar quantities for

other ads space for the application to the solid state physics or M2, M5 brane theories. It

would be also interesting to see if this method can help to settle problems of fluid mechanics.

[23].
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we can rewrite these in covariant form,

∂µT µν
(0) = 2

√
3Q

e

g
Fµν

extuµ (3.18)

∂µJµ
(0) = 0 .

Since there is a derivative, these are exact first order (non)conservation equations. The right

hand side is energy and momentum inflow sourced by the external fields. When external

fields are absent, we obtain the usual fluid dynamics system with conserved current. We

expect that the relation

∂µT µν = eFµν
extJµ , ∂µJµ = 0 , (3.19)

holds to all order.

We know the asymptotic forms of metric and gauge fields. This information is enough

to calculate the first order boundary stress-energy tensor and the current. Using our first

order metric and equation (2.17), we can find the first order stress-energy tensor

Tµν = 2M(ηµν + 4uµuν) − 2r3
+σµν := P (ηµν + 4uµuν) − 2ησµν , (3.20)

from which we can read off the viscosity η = r3
+. By restoring 1/(16πG) = N2

c /8π2, which

was set to be 1, we get

η =
N2

c

8π2
r3
+ =

πN2
c T 3

8





1

2
+

√

1

4
+

1

6

(

µ

gπT

)2




3

. (3.21)

– 9 –

is manifest in our case with Lorentz number 1/e2. Considering the complication of the

definition of temperature in the charged black hole and also the difference in the origin

of two terms, it is rather surprising to have such similar and simple recombination such

that Tσ and κ is proportional to each other. Using 2M = r4
+(1 + µ2/(3g2r2

+)) and r+ =

πT (1 +
√

1 + 2(µ/gπT )2/3)/2, we can express κ/T 2 and σ/T as a function of µ/gT only:

κ

T 2
=

σ

Te2
=

2π2

g2

1 +
√

1 + 2
3( µ

gπT )2

(

1 − 3
√

1 + 2
3( µ

gπT )2
)2 (3.30)

Fig. 1 shows this as a function of µ/gT .

We can also calculate the thermal conductivity,

κT =

(

ε + P

ρT

)2

κ = 4π2 ·
g2

16πG
·
ηT

µ2
. (3.31)

Notice that 1
16πG = N2

c

8π2 and g2

16πG is 1 and Nc/2Nf for R-charge and Baryon charge respec-

tively [21].

4. Discussion

We use gauge/gravity duality to determine the structure of the fluid dynamics in the pres-

ence of the conserved current and calculated thermal conductivity as well as the electrical

conductivity in the presence of the the external electric field. Since the dual of the par-

ticle number can regarded as the local charge of the Maxwell field in the bulk, we used

the charged black holes in AdS space. For our purpose, the first order in the derivative

expansion.

While the determination of the current especially the dissipative part is of highly

interesting, going second order or higher order is less interesting from the experimental

point of view: what RHIC experiment discovered is that we should neglect the dissipation

part almost completely. This perfect liquid behavior is a hall mark of the RHIC experiment.

However, LHC experiment may show different behavior due to its much higher collision

energy scale. Therefore calculating the transport coefficients may be of some importance

for future experiment. It would be also interesting to calculate the similar quantities for

other ads space for the application to the solid state physics or M2, M5 brane theories. It

would be also interesting to see if this method can help to settle problems of fluid mechanics.

[23].

Acknowledgements

The work of SJS was supported by the SRC Program of the KOSEF through the Center

for Quantum Space-time(CQUeST) of Sogang University with grant number R11 - 2005 -

021 and also by KOSEF Grant R01-2007-000-10214-0.

– 11 –



So far, QGP regime
what about hadrons?

 



Baryon mass in finite density: 
JHEP0804:010,2008, Seo +SJS

In general, interested in fininte density and 
temperature. 

For QGP, black hole background and T is easy.
string provide baryon charge.

In confining regime, temperature dependence 
is hard to encode due to large N nature of 
ads/cft. 

set T=0 with non-zero density.



Hologaphic view of baryon density

In 4d field theory: chemical potential is a 
constant gauge potential. 

In holographic view: 5d electric potential, 
phi, is a created by the charge, which is the 
string end points. 

choose the value at the horizon to be 0.

phi at boundary is the chemical pt.
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condition. For Q fundamental strings, the number of baryon D4 is Q/Nc. The condition

which makes the system to be stationary (ρ = 0, yc = ξc) is:

FD6 =
Q

Nc
FD4, (33)

which is simplified to be

ẏc =
ξ′c
yc

. (34)

With this, the value of ẏc which satisfy force balance condition is uniquely determined for
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FIG. 5: Probe D6 brane embedding for mq = 1.5 (a)without force balance condition. Blue circle
denote singularity where baryon D6 brane wrapped around. Thick vertical line denotes fundamental

strings which are understood as a source. (b)with force balance condition.

given value of ξo and mq. The difference between the behaviors of probe D6 branes with and

without the force balance condition is drawn in FIG. 5; In (a) we draw for the case Without

a Baryon is a compact brane connected to 
flavor branes by N_c strings : fig. a

strings are energy costly -> D branes deform to 
reduce the string length 0: fig. b

Force balancing condition gives connection condi 



Baryon mass in medium:
It falls but not in small current quark mass 

13

FBC: Q fundamental strings stretched between baryon D4 and probe D6 brane. (b) is for

the case with FBC: baryon D4 brane is pulled up while probe D6 brane is pulled down such

that the total system is stationary.

Since we established the existence of the baryon vertex, we now want to study how the

the mass of baryon depends on the medium density. The difficulty comes from the broken

symmetry: The very definition of the mass is the casimir Poincare invariance which is broken

in the presence of the medium and it is not obvious what is the most natural definition of

the baryon mass inside a medium.

As we discussed before, the length of the string of the baryon vertex is zero and therefore

D4 and D6 are contacting each other at a point. There are two sources of contribution

of the baryon mass change: One is the deformation of the compact D4 brane from the

spherical shape and the other is the deformation of the probe D6 brane from the zero charge

configuration. We believe that the latter is responsible for the baryon-baryon interaction

while the former is related to the quark-quark interaction to form a baryon in the medium.

Therefore we define the mass in the medium as the energy of the deformed compact D-brane.

Then, the mass of a baryon is proportional to the value of ξ0. The density dependence of a

mass of baryon D4 brane for several value of mq is drawn in FIG. 6(a). For large current

quark mass, the baryon mass decreases as a function of the density. On the other hand,

for the small quark mass it has a minimum. Similar behavior was observed in D4/D8/D̄8

system[15], where we have a zero current quark mass. See FIG. 6(b).
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FIG. 6: (a) Baryon Mass in medium for D4/D6 system with current quark masses mq = 1.5(dashed
line), mq = 1(gray line), mq = 0(real line). (b) The position (mass) of D4 brane as a function of
the electric displacement d for l = 0.5, l = 1 and l = 1.5 from top to below(l = 1 result is obtained

in [15]).
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Conclusion

Green functions and Transport coefficients 
calculated. 

 QGP may have a another surprising 
property: Metallic conductivity!

baryon mass falls in medium, perhaps.

Gravity dual of gauge theory may become a 
powerful tool for the heavy ion collision.


