Multi-particle correlation in a multi-phase transport model

Shanghai Institute of Applied Physics, CAS

Ma Guo-Liang (馬國亮)

Collaborators: S. Zhang, Y. G. Ma, H. Z. Huang, X. Z, Cai, J. H. Chen,

Outline

- Introduction (Motivation and Model)
- Result and discussion:
 - Mach-like structure
 - Ridge phenomenon
- Conclusion

Jet production and di-hadron correlation

Jet production and di-hadron correlation

Jet production and di-hadron correlation

Mach-like and ridge structures

Theoretical interpretations of Mach-like structure (1)

Theoretical interpretations of Mach-like structure (2)

Cherenkov radiation:

 $\Theta_{emission}$ = arccos (1/n(p))

PRL 96, 172302 (2006) Koch, Majumder, X.-N. Wang NPA 767, 233 (2006) I.M. Dremin

Correlation of Jet with flowing medium:

PRC 72, 064910 (2005) Armesto

AMPT model

— a multi-phase transport model (by C. M. Ko and Z. W. Lin et al.)

PRC 72, 064901 (2005)

Mixing-event Technique

$\Delta \phi$ correlations from AMPT (3<p_T^{trigger}<6GeV/c, 0.15<p_T^{assoc}<3GeV/c)

PLB 641, 362 (2006) G. L. Ma et al.

$\Delta \phi$ correlations from AMPT (3<p_T^{trigger}<6GeV/c, 0.15<p_T^{assoc}<3GeV/c)

PLB 641, 362 (2006) G. L. Ma et al.

More information from 3-particle correlation

--- deflected jet or Mach cone shock wave?

Three-particle correlations in AMPT

PLB 647, 122 (2007) G. L. Ma et al.

background subtracted 3-particle correlation signal

mix-event technique

Partonic Mach-like Shock Waves

"Ridge" observation

Additional near-side long range corrl. in Δη ("ridge like" corrl.) observed.

Dan Magestro, Hard Probes 2004, STAR, nucl-ex/0509030 and P. Jacobs, nucl-ex/0503022

Theoretical interpretations of ridge

1. Recombination model

Chiu and Hwa, PRC 72, 034903 (2005)

2. Longitudinal expansion of QGP

L.M. Satarov, H. Stöcker et al., PLB 627 (2005) 64

3. Collisional energy loss of heavy Q

Paul Romatschke, PRC 75, 014901 (2007)

4. Turbulent color field

A. Majumder, B. Muller et al., PRL 99, 042301 (2007)

C.Y. Wong Phys. Rev. C 76, 054908 (2007)

Ridge correlation @ AMPT

How the 'ridge' grows up?

Longitudinal flow from parton cascade

 $\rho(y_e) = \sqrt{\frac{1 + \sinh^2(y_e)}{1 + e^2 \sinh^2(y_e)}}.$ (2)

strong parton cascade.

Conclusions

- Mach-like shock wave is born in the strong parton cascade and developed in hadronic rescattering.
- Splitting amplitude of Mach-like structure can be reproduced by a partonic cross section 10 mb instead of 3 mb, which indicates a strongly coupling matter at RHIC.
- The longitudinal broadening of near side is due to the longitudinal flow produced by strong parton cascade.

Thank you!

Back up

Parton cascade effect on 2- and 3particle correlations

- Hadronic rescattering mechanism alone can not give big enough splitting parameters and correlation areas.
- Parton cascade mechanism is essential for describing the splitting amplitude of experimental Mach-like structure.
- Iarge energy loss in dense partonic medium.