Dense Matter at J-PARC

K. Ozawa (Univ. of Tokyo)

Contents: QCD Physics @ J-PARC Experiments Summary

QCD physics @ J-PARC

My opinion...

High density (Neutron/quark) star

High density physics

Origin of hadron mass

2008/10/15

ATHIC, K. Ozawa

High density star

Hyperon Nucleon interaction

- Studied using hyperon bound state.
 - Spectroscopy of Λ hyper-nuclei
- Extended to study for s=-2 system
 - Double hyper nuclei
 - E hyper nuclei?

Hyperon Nucleon scattering

Direct measurements of cross section

- Current data statistics is poor
- Lattice calculation exists

Nemura, Ishii, Aoki, Hatsuda, arXiv:0806.1094

New experimental techniques need to be developed to collect large statistics. SciFi + MPPC readout

2008/10/15

ATHIC, K. Ozawa

Deeply bound Kaon

Deeply bound K nuclear states are predicted. Strong KN attraction suggests a deep K nuclear potential ($U_k \sim 200 \text{ MeV}$) A calculation shows very high density.

 $\rho > \rho_0 \times 10 !?$

A. Dote et al. : PLB590 (2004) 51, etc.

> Measure Potential, Binding Energy, Width

Experiment for K⁻pp bound state Formation (Missing mass)

2008/10/15

Origin of hadron mass

NA60 results

[van Hees+RR '06]

1600 central In-In NA60 in-med ρ all p_{T} 1400 OGP DD 1200 dN_{μμ}/dM [counts] 4π mix sum 1000 sum+ω+φ 800 600 400 200 0 0.6 0.8 0.2 0.4 1.2 1.4 1 M [GeV]

Spectrum is reproduced with collisional broadening.

Next, Try for extracting of a quark condensate information from the data.

2008/10/15

ATHIC, K. Ozawa

PHENIX results

 Freeze-out Cocktail + "random" charm + ρ spectral function

Low mass

- M>0.4GeV/c²: some calculations OK
- M<0.4GeV/c²: not reproduced

Intermediate mass

 Random charm + thermal partonic may work

2008/10/15

Then, Nucleus

π bound state

K. Suzuki et al., Phys. Rev. Let., 92(2004) 072302

 π bound state is observed in Sn(d, ³He) pion transfer reaction.

Reduction of the chiral order parameter, $f_{\pi}^{*}(\rho)^{2}/f_{\pi}^{2}=0.64$ at the normal nuclear density ($\rho = \rho_{0}$) is indicated.

Jido-san et al. shows that π nucleus scattering length is directly connected to quark condensate in the medium.

$$\frac{\langle \bar{q}q \rangle^*}{\langle \bar{q}q \rangle} \simeq \left(\frac{b_1}{b_1^*}\right)^{1/2} \left(1 - \gamma \frac{\rho}{\rho_0}\right).$$

D. Jido et al., arXiv:0805.4453

New exp. will be done at RIKEN

Spectral modification $\phi \rightarrow e^+e^-$

R. Muto et al., PRL 98(2007) 042581

KEK E325

Invariant mass spectrum for slow ϕ mesons of Cu target shows a excess at low mass side of ϕ .

Measured distribution contains both modified and un-modified mass spectra. So, modified mass spectrum is shown as a tail.

First measurement of ϕ meson mass spectral modification in QCD matter.

Next step

- 1. Detailed spectra need to be obtained "experimentally" in ω -p plane.
- Sum rules will be calculated using experimental data and can be compared to QCD (qq condendates).
- 3. Finally, details of spectra can be discussed.

Experiments to extract direct physics information.

Experimental requirements High statics
 Clear initial condition

2008/10/15

ATHIC, K. Ozawa

What can be achieved?

Summary

- Several interesting experiments are proposed at J-PARC for exploring QCD matter.
- Results of the first generation experiments are reported.
 - It seems some results show contradiction and it should be solved by the next generation exp.
- Many experiments for exploring hadron mass properties in nuclear medium are being proposed.
 - Explore large kinematics region
 - Measurements with stopped mesons

Mass spectra measurements

KEK E325, $\rho/\omega \rightarrow e^+e^-$

Induce 12 GeV protons to Carbon and Cupper target, generate vector mesons, and detect e+e- decays with large acceptance spectrometer.

The excess over the known hadronic sources on the low mass side of ω peak has been observed.

CLAS g7a @ J-Lab

Induce photons to Liquid dueterium, Carbon, Titanium and Iron targets, generate vector mesons, and detect e+e- decays with large acceptance spectrometer.

Contradiction?

- Difference is significant
- What can cause the difference?
 - Different production process
 - Peak shift caused by phase space effects in pA?

- Need spectral function of ρ Invariant Mass (GeV) without nuclear matter effects
- Note:
 - similar momentum range In addition, background issue is
 - E325 can go lower slightly pointed out by CLAS

2008/10/15

ATHIC, K. Ozawa

Background is not an issue

• Combinatorial background is evaluated by a mixed event

The problem:

- Each experiment can't apply another method.
- We should be careful on normalization.

Performance of the 50-GeV PS Numbers in parentheses are ones for the Phase 1.		
Beam Energy:	50GeV	
	(30GeV for Slow Beam)	
(40GeV for Fast Beam)		
Repetition:	<u>3.4 ~ 5-6s</u>	
• Flat Top Width:	<u>0.7 ~ 2-3s</u>	
Beam Intensity:	3.3x10¹⁴ppp, 15μA	
(<u>2×10¹⁴ppp, 9μA</u>)		
• Beam Power:	_{ac} = 400MeV (180MeV) 750kW (<u>270kW</u>)	

J-PARC

Cascaded Accelerator Complex:

Super-Kamiokande

Synchrotron

ATHIC, K. Ozawa

2008/10/15

ATHIC, K. Ozawa

QCD to observables

$$\mathcal{L} = -\frac{1}{4} F^{\alpha}_{\mu\nu} F^{\mu\nu}_{\alpha} - \sum_{n} \bar{\psi}_{n} \gamma^{\mu} [\partial_{\mu} - ig A^{\alpha}_{\mu} t_{\alpha}] \psi_{n} - \sum_{n} m_{n} \bar{\psi}_{n} \psi_{n}$$

- 測定できるものは、QCD媒質中でのハドロン
 - ハドロン(主にメソン)の質量、巾、Couplingなど
 - Phase transition に伴う粒子放出
- カイラルパートナーの質量を測るのが王道?
 - $-\rho (J^{P} = 1^{-}) m = 770 \text{ MeV} : a_{1} (J^{P} = 1^{+}) m = 1250 \text{ MeV}$
 - N (1/2⁺) m=940 MeV : N^{*} (1/2⁻) m=1535 MeV ?
 - 実験的に非常に困難
- 非摂動論的QCDや現象論によりハドロンの性質と関係づける

Theoretical approaches

- Nambu-Jona-Lasino model
 - Nambu and Jona-Lasino, 1961
 - Vogl and Wise, 1991
 - Hatsuda and Kunihiro, 1994
- Chiral Perturbation theory
 - Weinberg 1979
 - Gasser and Leutwyler, 1984, 1985
- QCD sum rule
 - Shifman et al., 1979
 - Colangelo and Khodjamirian, 2001
 - Hatsuda and Lee, 1992
- Lattice QCD
 - Wilson, 1974
 - Karsch, 2002
- Empirical models
 - Potential model (De Rujula *et al.*, 1975), Bag model (Chdos *et al.*, 1974)
- In addition, Collisional broadening, nuclear mean field ...

Vector meson mass

G.E.Brown and M. Rho, PRL 66 (1991) 2720 $\frac{\mathbf{m}^{*}}{\mathbf{m}} \approx \frac{\left\langle \overline{\mathbf{q}} \mathbf{q} \right\rangle^{*}}{\left\langle \overline{\mathbf{q}} \mathbf{q} \right\rangle^{*}} \approx 0.8 \left(\rho \approx \rho_{0} \right)$

T.Hatsuda and S. Lee, PRC 46 (1992) R34 $\frac{m_V^*}{m_V} = \left(1 - \alpha \frac{\rho_B}{\rho_0}\right); \alpha \approx 0.18$

INS-ES TAGX experiment

Eγ~**0.8-1.12.GeV**, sub/near-threshold ρ⁰ production

- PRL80(1998)241,PRC60:025203,1999.: mass reduced in invariant mass spectra of 3He(γ, ρ⁰)X ,ρ⁰ --> π+π-
- Phys.Lett.B528:65-72,2002: introduced cosθ analysis to quantify the strength of rho like excitation
- Phys.Rev.C68:065202,2003. In-medium ρ0 spectral function study via the H-2, He-3, C-12 (γ,π+ π-) reaction.

Try many models, and channels ∆, **N*, 3**⊓,...

Εγ	STT model	Previous
	Present	work
000.060	700 710	670+21
800-960	/00-/10 Mo\/	072±31
IVIEV		IVIEV
960-1120	730	743±17
MeV	MeV	MeV

CBELSA/TAPS

Final state interaction

J.G.Messchendorp et al., Eur. Phys. J. A 11 (2001) 95 γ + Nb @ 1.2 GeV D simulation γ 10 inside π^0 outside no rescat. $\gamma A \rightarrow \omega + X$ inside (64%) (22%)rescat. **10⁵** •π⁰ν (13%) YY $\mathbf{m}_{\omega} = \sqrt{(\mathbf{p}_{\pi} + \mathbf{p}_{\gamma})^{2}}$ 10 disadvantage: 10 • π^0 -rescattering 0.8 0.9 Μ_{πν} (GeV) 0.2 0.3 0.4 0.5 0.6 0.7 no distortion by pion rescattering

2008/10/15

expected in mass range of interest; further reduced by requiring T_{π} >150 MeV

32

Experimentalists face to reality - E325 simulation-

CLAS g7b

Momentum dependence will be studied by CLAS (soon?).

2008/10/15

<u>Momentum Dependence – p Meson</u>

Consideration

- Gamma beamでの測定に変化が無いのは昔から知られている。
 - H. Alvensleben, et al.,
 NPB18(1970)333-365
- Initial conditionの影響を見積も る必要がある。
 - > <0|qq|0>
 - ✓ 自由空間でのメソンに対す る理解の必要
 - <A|qq|A> ≺
 - ✓ 計算は励起されていない状態の原子核
 - > <A'|qq|A>, <A'|qq|A'>
 - ✓ 実際の測定では、原子核は励起されているし、励起のされ方もproduction processによって異なる。

LEPS and CLAS, ϕ in γ +A

Small sensitivity for spectral modification in mass distribution due to final state interaction. Nuclear absorption cross section of ϕ is measured

Results are consistent with KEK for broadening. KEK experiment shows 3 x larger mass width in nucleus. 2008/10/15 ATHIC, K. Ozawa

Advantages at RHIC

- クォーク・グルーオン・プラズマの生成
- 衝突の初期状態の摂動論的な計算による決定
 - Clearなプローブの設定
- 流体力学を用いた時間発展の解析

²⁰⁰⁸ 系の温度・密度状態の時間発展の定量的評価が利用可能

RHIC results

39

ω bound state in nucleus

Energy level of bound state has information about interaction between nucleus and meson.

Theoretical prediction for ω bound states

0 degree measurement

Yield Estimation

Summary plot of $\pi^- p \rightarrow \omega n$ for backward ω (G. Penner and U. Mosel, nucl-th/0111024, J. Keyne et al., Phys. Rev. D 14, 28 (1976))

0.14 mb/sr @ $\sqrt{s} = 1.8$ GeV same cross section is assumed.

Beam intensity 10⁷ / spill, 3 sec spill length)

Neutron Detector acceptance $\Delta \theta = 1^{\circ}(30 \text{ cm x } 30 \text{ cm } @ 7\text{m})$

Gamma Detector acceptance 75 % for single, 42% for triple Branching Ratio: 8.9%

Optimistic obtained yield is 31650

42

New exp: ηbound stateLOI@J-PARC by K. Itahashi et. alChiral symmetry in
Baryon

KΣ-KΛ s-wave resonance (Chiral Unitary model) Chiral partner of nucleon (Chiral Doublet model)

Experiment 1:

 $\phi p \rightarrow K^+ \Lambda$

