Hadron production in 65AGeV Au + 65 AGeV Au collisions at RHIC-PHENIX (1)

> Susumu SATO for PHENIX (Univ. of Tsukuba)

BNL-RHIC-PHENIX

PHENIX collaboration and Japanese Contributions

Brazil:	Sao Paolo	Ì
Canada:	McGill	
China:	Academia Sinica, CIAE	
France:	SUBATECH	
Germany:	Muenster	
India:	BARC, Banaras Hindu University	
Israel:	Weizmann Institute	

Japan: <u>CNS, Hiroshima, KEK,</u> <u>Kyoto, Nagasaki</u> <u>RIKEN, RIKEN BNL Res. Cent.,</u> <u>TITech., Tokyo,</u> <u>Tsukuba, Waseda</u>

Korea: Korea, Myongji, Yonsei
Russia: IHEP Protvino, JINR Dubna, Kurchatov, PNPI, St. Petersburg STU
Sweden: Lund
U.S.: (National Labs) BNL, LANL, LLNL, ORNL (Universities) Abilene Christian, Alabama-Huntsville, California-Riverside, Columbia, Florida State, Georgia State, IowaState, New Mexico, New Mexico State, SUNY-Stony Book, Tennessee, Vanderbilt

Japan takes large roles among 12 nations (46 institutions)

BNL-RHIC-PHENIX

Physics of hadron measurement with PID

(1) Observation and characterization of QCD plasma (QGP).

Observables	distinctive feature of fireball	
2 nd rise of <pt></pt>	1 st order of phase transition into hadron	PID makes constrains
R _{out} >>R _{side}	longer hadronization time	stronger.
high-pt hadron production	reduced dE/dx of quarks in fireball	QGP?!
change of p-bar production	change in a baryon susceptibility	PID
change of width or/and branching ratio for \$\delta\rightarrow K^+K^-	different reaction inside the fireball	is required.

(2) Understanding of basic collision dynamics for heavy ion collisions at s^{1/2}=130AGeV

change in particle ratio change in thermodynamics required. Dynamics	change in transverse kinetic energy spectra	change in temperature, flow, stopping, baryon density.	PID is	Basic Collision
	change in particle ratio	change in thermodynamics	required.	Dynamics

BNL-RHIC-PHENIX

Tracking devices in Central arm

	Location (m)	Technology	# of Ch.	Performance
Drift Ch. (DC)	2.02-2.46: (East & West)	Low mass multi- wire drift ch.	12.8 k	150µm (r-ф)
Pad Ch. (PC)	2.47 : (East, PC1) 4.15 : (West, PC2) 4.91 : (East, PC3)	pad readout	210 k	4 –8 mm (z & r-φ)
Time Expansion Ch. (TEC)	4.23-4.88 (East)	multi- sampling dE/dx	43 k	250 μm (r-φ)

• DC is fundamental device for momentum reconstruction

- TEC is for higher momentum reconstruction
- PCs are for z-info, and pattern recognitions

BNL-RHIC-PHENIX

First detection of Au + Au collisions at PHENIX

On Jun/15/ 2000.

Signals were recorded simultaneously in seven PHENIX detectors **ZDC, BBC, TOF, PAD, DC, TEC, EMCal**.

The event display shows reconstructed tracks pointing to the collision.

BNL-RHIC-PHENIX

BNL-RHIC-PHENIX

BNL-RHIC-PHENIX

TOF association with DC/PC1 tracking

BNL-RHIC-PHENIX

BNL-RHIC-PHENIX

BNL-RHIC-PHENIX

Summary

• Tracking detectors (DC/PC1/TEC/PC3) and the TOF at the *PHENIX* central arm are demonstrated to be functioning in the first RHIC operating year (Year-2000), at 65 AGeV Au + 65 AGeV Au collisions.

• The magnetic spectrometer enables the PIDed hadron physics at higher momentum region, which is one of the distinctive advantages in *PHENIX*.

BNL-RHIC-PHENIX