
Measurement of
Azimuthal Anisotropy

and the QGP

Yasuo MIAKE, Univ. of Tsukuba

i) What is azimuthal anisotropy
ii) How it is measured
iii) What is learned



Part 1

What is azimuthal anisotropy
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Azimuthal anisotropy

 In non-central col., participant has
almond shape at initial stage.
  ie., anisotropy in coordinate space

 Emission of particle in azimuth is
influenced by λ & R relation.
 λ >> R ; isotropic
 λ << R ; hydro.elliptic

  Anisotropy of the coordinate space
converted to that of the momentum
space.

 Conversion of anisotropy from
coordinate space to momentum
space
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Azimuthal distr wrt reaction plane

 Evaluate as Fourier components
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Evaluation with Fourier exp.

• Obtain azimuthal
distributions w.r.t. the
reaction plane.

• Evaluate the distribution with
Fourier components
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Fourier harmonics
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Sensitivity to the early stage

 Anisotropy in
coordinate space
disappears quickly

 Direct measure of
the conversion
mechanism

RQMD
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Expect Eccentricity to disappear
quickly

 Ratio of eccentricity after a time delay
 Disappears quickly
  v2 senses early stage of collision

Kolb et.al., PRC62(2000)054909
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Reasons why I like v2

 Clear origin of the signal !
 Geometry is clear
 From eccentricity to v2

 Centrailty dependence gives good
tests

 Sensitivity to the early stage of
collisions !
 Mean free path λ vs. R
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Part 2

How it is measured
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How it is analyzed

 Three methods;
 Pairwise Method
 Cumulant Method
 Reaction Plane Method
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Two Methods

 Reaction Plane Method
 Event by event determination

of R.P.
 Once the R.P. is established,

easier to apply other particle
species.

 Pairwise Method
 No Reaction Plane.
 Measure azimuthal corr. of

all the pairs
 Small effects ~v2**2, but

high statistics
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Analyze me

 PHENIX; non-uniform in azimuth
 How it works?
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R. P. method & flattening corr.

 Determine azimuthal direction of R.P.
every event
 Define average of azimuthal angles of

all the measured particles as R.P.
 Most probable direction as R.P.

 Artificial peak due to detector
acceptance !

 Flattening the peak

I

Ical

!

!
"

2cos

2sin

0
2tan =

0
!

flat

0
!

cal

0
!

Azimuthal acceptance
of PHENIX

c

calflat !!! "+=
00

)2cos(( 0

cal

n
n

c
nA !! "=#

)2sin(
2

0

cal

n
n

n
A !"=

)2cos(
2

0

cal

n
n

n
B !=

))2sin( 0

cal

n
nB !+

c
!"

cal

0
!

Toy Simulation



Y.Miake, KPS meeting at APCTP in Pohang, 2005 15

Flattening corr. works for PHENIX

 Toy simulation assuming
 PHENIX acceptance
  v1, v2

  multiplicity
 After resolution corr., v2

can be reconstructed
successfully

 It works!
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Toy Simulation
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Pairwise Method & Acc. Corr.

 Azimuthal corr of all the measured
particle pairs
 Acceptance dominates the shape of

distribution

 Effect of acceptance is evaluated by
mixed event

Real  EventReal  Event
A

j

A

i !!! "=#

Mixed EventMixed Event
B

l

A

k
!!! "=# *

Ｈ１２・筑波大・卒業論文・進藤美紀

Azimuthal acceptance
of PHENIX

Toy Simulation
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Pairwise method works!

 Toy simulation assuming
 PHENIX acceptance
 v1, v2

  multiplicity
 Observed anisotropy ＝v2**2

  Good agreement with the input
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Stability of results

 With smaller acceptance, weaker effect observed.
 Poorer resolution

 But, after resolution correction, consistent results obtained.

Toy Analysis
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Conclusion of Toy model study

 Even with PHENIX acceptance, we obtain
consistent results both from  R.P. method and
Pairwise method, if they are pure elliptic flow.

 We might get different results if there are
  higher harmonics
  non-flow effect such as HBT, particle decay, kinematical

correlations

 Reliable determination of R.P. is more important !
  avoid non-flow effect as much as possible

 Take wide rapidity gap from central detector
 BBC as main R.P. detector
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BBC

Central arm

beam

0-5%

5-10%

10-20%

BBC

Beam Beam Counter (BBC)
|η|=3-4

Towards reliable R.P.

 Wide rapidity gap
from central detector

 Full Azmimuthal
Coverage

 Enough multiplicity
for resolution
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Reaction plane distribution

[rad][rad]

Correlation of two reaction plane
BBC north v.s south

JPS-S02-Sakai

R.P. from BBC

 Clear and consistent correlation among two BBC’s.
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Further R.P. studies

 To establish R.P., need to confirm
global(whole event) correlations

SMD/ZDC

BBC

MVD

BBC

Central arm
beam

0-5%
5-10%

10-20%

BBC
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R.P. from elliptic flow

 Better resolution with MVD since wider acceptance
 Confirm clear event-wide correlations among detectors

Φ2
BBC1 vs Φ2

BBC2 Φ2
MVD1 vs Φ2

MVD2 Φ2
BBC vs Φ2

MVD

[−π/2,π/2]

elliptic
 plane

Participant Region

Phenix; S.Esumi JPS/DNP 2005
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R.P. from directed flow

 Clear correlation between SMD(spect) and BBC(part) in v1
 As seen at SPS, back-to-back corr of Neutrons and Pions.

ΦSMD1−π vs ΦSMD2ΦBBC1−π vs ΦBBC2 ΦSMD−π vs ΦBBC

back-to-back back-to-back spectator neutrons vs
πs from participants 
are flowing opposite.

[−π,π]

directed
  plane

BBC

SMD

Phenix; S.Esumi JPS/DNP 2005
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Comparison of three methods

 Striking agreement (!) even with R.P. method.
 No strong non-flow effect !?

Phenix; P.R.L. 94, 232302(2005)



Part 3

What is learned
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What we expected before RHIC

 There is a
tendency of
saturation!?

 Hadron cascade
predicts a few %.
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Surprise !

 Early compilation

AGS

SPS

RHIC
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Large azimuthal anisotropy

 Larger in higher energies.
 Scaling w. η-ybeam !?

 As high as 5%
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Failure of hadronic scenarios

 Hadronic scenario
underestimates v2 at
RHIC.
  v2 ~ 1 - 2 %

 System thermalized
early with the
mechanism other than
hadronic rescatterings.

M. Bleicher, H. Stocker Phys. Lett. B526 (2003) 309
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 v2 vs. Eccentricity

 At low pt region,  the ratio stays ~constant
 Scaling with eccentricity shows v2 builds up at early stage

! 

v
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Phenix; PRL 89(2002)212301
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Success of hydrodynamics

 Low pt region;
  v2(π) > v2(K) > v2(p)
 Good agreement with

hydrodynamics
 Very early thermalization (0.6

fm/c) required !
 What brings the system

thermalization in such a
short time!

 Partonic degree of
freedom

 Deviations from the hydro at
higher pt (> 2 GeV/c);
  v2(π,K) < v2(p)

 Order Reversed !
 Other mechanism?

PHENIX : P.R.L. 91, 182301 (2003)
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Anisotropy at jet region

 Anisotropy at
high pt caused
by the parton
energy loss.

M. Gyulassy, I. Vitev and X.N. Wang, PRL 86 (2001) 2537

In higher gluon
density, larger energy

loss of partons
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What increases from SPS to RHIC

 How we compare RHIC and SPS data; pt-integrated-v2?
 Need to separete the effects; increase of <pT> and increase of v2

  pt integrated-v2 includes the effect of increase of <pT>

Filled ; RHIC
Open ; SPS

Phenix; NPA 757(2005)184
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Saturation of v2 at the same pT

  v2 increases up to 62 GeV, then saturate.
 May be indication of softening of EOS.

Phenix; P.R.L. 94, 232302(2005)

pT integrated-
v2 increases,
since <pT>
increases with
energy.
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2nd surprise; baryon dominance

 We had many reasons to
consider > 2GeV/c is the jet
region.

 In peripheral, p/π ratio
similar to those in ee/pp
suggesting fragmentaton
process.
 Fragmentation process

should show np < nπ as seen
in ee/pp.

 In central Au+Au, p/π ratio
increases with centrality,
suggesting other mechanism.

Phenix; P.R.L. 91(2003)172301


Quark Recombination Model
(Quark Coalescence Model)


Thanks to high resolution

Time-of flight detector
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Quark recombination model

 Other possible production
mechanism of high pt hadrons
than the frag.

 Quarks, anti-quarks combine to
form mesons and baryons from
universal quark distribution, w.
 Mesons from 2 q with 1/2 of pT,

baryons from 3 q with 1/3 of pT.
  Bacause of the steep distr. of w,

this process wins at mid-pt.
 Characteristic scaling features

expected.
 Quark number scaling
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Quark number scaling

 Quark number scaling clearly observed in v2.
 Distinct difference between Baryon Meson also seen in RCP

Presented by M. Lamont (QM04)

Baryon

Meson
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Other particle species

 Once the
R.P. is
established,
the rest is
easier.

Phenix; H. Masui @ QM05
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Quark Number Scaling

 Quark number
scaling holds.

 Collectivity at
partonic level.

Phenix; H. Masui @ QM05
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Electron and charm

γ conversion
π0 → γee

η → γee, 3π0

ω → ee, π0ee
φ → ee, ηee

ρ → ee

η’ → γee

 Origins of electrons
 “photonic”

 Dalitz decays of π0,η,ρ,ω,
 Photon conversions

 “non-photonic”
 Semi-leptonic decays of heavy

flavored mesons

 Method of Analysis
 Cocktail
 Photon converter

 Results are consistent
with those photonic +
charm decays.
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Open charm production in AA

 consistent with √s systematics and binary scaling.
 Centrality dependence shows Nbinary scaling.

 support charm contribution

Phenix, PRL94(2005)082301
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Info. of charm from electrons

 Measure v2 of
inclusive electrons

 Higher than pions in
low pt.
 Dalitz dominant.

 Lower in high pt?
 Effect of charm?

Inclusive
electrons

Phenix, PRC72(2005)024901
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Charm seems to flow!?

 Data seem to favor
flow of the charm.

 If so, thermalized &
flowing charm
supports quark-
coalescence &
formation of QGP.

Star, Nucl-ex/0411007

Phenix, PRC72(2005)024901

V.Greco, C.M.Ko,
R.Rapp,PLB595(2004)202.



Y.Miake, KPS meeting at APCTP in Pohang, 2005 45

Summary of my talk

  v2 is fun!
 Establishment of R.P. is great !

  v2 is even useful !
 Sensitive to the early stage of collisions
 Thermalization as early as 0.6 fm/c

 Large azimuthal anisotropy cannot be created with hadronic
process.

 Support the quark recombination model
 Collectivity at parton level
 Phenomenological, but universal quark distribution function!
 statistical description of quarks QGP

 Much fun to come
 Even charm seem to flow !
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One more thing,

 New text book for graduate students



Backups
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Npart vs Nbinary

 Since nucleus is extended object,
centrality of collision plays
important role.

 For comparison with pp or dAu also
for centrality study, we need
scaling variables.

 Npart;
 # of participant nucleons
 Particle production in hA is prop. to

Npart, (Wounded-Nucleon Model)

 Nbinary;
 # of binary nucleon-nucleon collisions
 Pass through at high energy.

 Evaluation of Npart & Nbinary by
Glauber Model.

Participant
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ΨA：R.P.angle of Sub-event A

ΨB：R.P.angle of Sub-event B

R.P. Resolution from sub-event

 Split 1 event to sub-event
A and B randomly

 Determine R.P. in each
sub-event ; ΨA  ΨB

ΨA

ΨB


