Measurement of Centrality dependence of identified hadron Elliptic Flow in √s_{NN} = 200 GeV Au+Au collisions at RHIC - PHENIX

Hiroshi Masui / Univ. of Tsukuba for the PH*ENIX Collaboration JPS, 62nd Annual Meeting

Why Elliptic Flow ?

 Sensitive probe in the early stage of heavy ion collisions

2/11

- Initial geometry
 overlap (eccentricity)
 - Initial density + EOS
 - System size (number of collisions)
- Final momentum anisotropy (v₂)

$$\frac{dN}{d\phi} \propto 1 + 2v_2 \cos\left(2[\phi - \Psi]\right)$$
$$v_2 = \langle \cos\left(2[\phi - \Psi]\right) \rangle$$

Universal Scaling of v₂ ? 3/11

- Universal scaling of $v_{\rm 2}$ has been observed by assuming

- $-\epsilon \propto \langle v_2 \rangle$ of non-identified charged hadrons
- $-v_2 \propto F(KE_T/n_q)$
- Questions
 - Are these assumptions really correct ?
 - The scaling of v₂ is tested from central to midcentral. How about peripheral collisions ?
- Study the validity of the scaling of v₂ in a wide range of centrality for identified hadrons

PHENIX Experiment

JPS, Sep/24/2007

- Vertex, Centrality
 - BBC, ZDC
- Event plane
 - − BBC (full azimuth, |η| = 3.0 3.9) ⇒ Large rapidity interval
- Tracking
 DC, PC
- PID

- TOF ($|\phi| < \pi/4$, $|\eta| < 0.35$), $\sigma_t \sim 120$ ps
 - π, p : p_T < 4 GeV/c, K : p_T < 3 GeV/c

Centrality dependence of v₂(p_T) 6/11

JPS, Sep/24/2007

KE_T + NCQ scaling of v₂ 7/11

- Ratio of data to fit (next slide)

JPS, Sep/24/2007

 Scaling works within systematic errors, except for low KE_T – Radial flow ?

JPS, Sep/24/2007

9/11

Systematic error on $\varepsilon \sim 10 - 20 \%$

- Eccentricity (ε) is estimated by Glauber MC simulation
 - ε value's are not changed so much in b = 5 - 9 fm (10 - 50 % centrality). $\Delta \varepsilon / \varepsilon \sim$ 10 %
 - Quite different for different definitions of ε at central and peripheral

Eccentricity scaling

PHENIX PRELIMINARY $v_2/(\langle\epsilon\rangle \times n_q)$ Au + Au @ $\sqrt{s_{_{NN}}}$ = 200 GeV, $|\eta| < 0.35$ 0.6 0.4 0.2 % centrality % centrality centrality % centrality 40 - 50 % centrality 50 - 60 % centrality 0 0.5 1.5 $KE_{T}/n_{q} = (m_{T} - m_{0})/n_{q} (GeV)$

* Only statistical errors are shown * Systematic error on $\langle \epsilon \rangle \sim 10 - 20 \%$ Scaled v₂ with participant eccentricity

- Start to break even in mid-central at high KE_T
 - Scaling works at low
 KE_T within systematic
 errors
- Clear difference between central and peripheral
 - The difference of v₂ is also observed for different eccentricity

Summary

- Study the scaling of $v_2(p_T)$ for identified hadrons in a wide range of centrality
- KE_T + quark number scaling
 - Scaling holds within systematic errors, except for low KE_{T}
 - New RXNP detector could help us to
 - reduce systematic errors
 - add more statistics at peripheral events
- Eccentricity scaling
 - Scaling breaks even in mid-central at high KE_{T}
 - works for low KE_{T} within systematic errors
 - Clear difference between central and peripheral
 - Suggest that $\langle v_2 \rangle \propto \epsilon \Rightarrow \langle v_2 \rangle \propto \epsilon \times f(N_{part})$

12/11

JPS, Sep/24/2007

Elliptic Flow at RHIC

Event plane resolution

14/11

- Event plane resolution is determined by multiplicity and v₂
 - Maximum at mid-central
 - High multiplicity, small v₂ at central
 - Low multiplicity, large v₂ at peripheral

JPS, Sep/24/2007

Terminology

15/11

$$\varepsilon_{std}^{w} = \frac{\{w \cdot (y^2 - x^2)\}}{\{w \cdot (y^2 + x^2)\}}$$
$$w = n_{part}(x, y) \text{ or } n_{coll}(x, y)$$

$$\varepsilon_{var}^{w} = \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4\sigma_{xy}^2}}{\sigma_x^2 + \sigma_y^2}$$

$$\sigma_x^2 = \{x^2\} - \{x\}^2$$

$$\sigma_y^2 = \{y^2\} - \{y\}^2$$

$$\sigma_{xy} = \{xy\} - \{x\}\{y\}$$

$$v_2\{EP_2\} \simeq v_2\{2\} = \sqrt{\langle v_2^2 \rangle}$$

 $\varepsilon\{2\} = \sqrt{\langle \varepsilon^2 \rangle}$

• Definition of eccentricity

- ϵ_{std} : Standard eccentricity
- ϵ_{var} (participant eccentricity ϵ_{part})
- ϵ_2 (event plane eccentricity) : ϵ_{var} , subtract auto-correlation event-byevent (an idea from ShinIchi)
- Weighting
 - $\epsilon^{\text{part}}(\epsilon^{\text{coll}})$
 - Calculated by weighting with N_{part} (N_{coll}) distribution
- Averaging
 - $\epsilon \{2\} \equiv \sqrt{\langle \epsilon^2 \rangle}$
 - Averaging of ϵ^2 over all events, then take square root
 - More natural definition like measured v₂
- Total : $3 \times 2 \times 2 = 12$ definitions

JPS, Sep/24/2007

Eccentricity

- Estimated by Glauber MC simulation
 - $\epsilon^{coll} > \epsilon^{part}$ due to steeper N_{coll} distributions compared to N_{part}