Flow and non-flow in jet correlation

ShinIchi Esumi (Univ. of Tsukuba) Jiangyong Jia (Stony Brook Univ.)

flow : any-correlation with R.P. non-flow : random w.r.t. R.P.

- Jet : If it's correlated with R.P. ---> flow (high $p_T v_2 > 0$) and non-flow If it's not correlated with R.P. ---> pure non-flow (B.G. for true v_2)
- (1) "non-flow" effect modifies the measured v_2 , when they give any correlations between R.P. detector and v_2 detector.
- (2) If medium responses (mach-cone, ridge) are related with jet, they will also be a part of "flow" or "non-flow" according to jet.
- (3) Inclusive v_2 should contain all of them (jet, mach-cone, ridge), "non-flow" should always reduce the inclusive (true) v_2 , while "flow" of (jet, mach-cone, ridge) can enhance the (true) v_2 .
- (4) Recent results tell "medium responses" do change its shape and yield as a function of relative angle w.r.t. R.P.

Understanding of Mach-cone shape of $(p_T^{Asso}=1\sim 2GeV/c)$ with trigger angle selected 2-particle correlration $(p_T^{Trig}=2\sim 4GeV/c)$

Cathie-Riken workshop on Jet-Correlarion, 26/Feb/2009, BNL

ShinIchi Esumi, Univ. of Tsukuba

6

random R.P. mixing (total flow + jet)

random R.P. mixing (total flow subtracted jet)

effect of the experimental resolution

The multiplicities in these regions are assumed to be proportional to the path length (a la energy loss).

Note: original jets are generated according to N_{coll} profile

RHIC 200GeV Au+Au, mid-central collisions at mid-p_T region (1-4 GeV/c) with $v_2 = 0.1 \sim 0.2$

* Significant semi-hard (mini-jet) fraction relative to soft-thermal contribution ~ several*10%

* Significant v_2 effect from the semi-hard component relative to soft-thermal particle v_2 ~ several*10%

* Significant smearing on jet shape even with σ_{R.P.}~ 0.7 But it's not really because of poor accuracy of E.P. angle, it's more because mini-jets push up the inclusive v₂ which is subtracted.

* RHIC data analysis is in progress...

* E.P. can also be biased by correlated pair even with large η gap...

- (1) away side of a back-to-back(b-t-b) jet is wider in η than in ϕ
- (2) If there are two parallel b-t-b jets, away side of one b-t-b jet can be near side of the another b-t-b jet.
- (3) Suppression as well as modification of b-t-b jet would depend on relative angle w.r.t. almond geometry, we know this from v_2 measurement and believe this is the major source of v_2 at high p_T .
- (4) Therefore, there should be inter b-t-b jets correlation give by the geometry from (3), this could make near side ridge like effect, especially if the effect (3) has shaper dependence than v_n (=cosNx).
- (5) We always measure inclusive $v_{2,4}$, which includes the effect (3). Therefore any modification which could generates the elliptic (or harmonic) anisotropy would be included in the measured $v_{2,4}$.
- (6) We subtract BG contribution with this $v_{2,4}$ from (5) by maximizing BG contribution assuming zero jet yield at minimum at any d ϕ .
- (7) If near and away side jets overlap each other, this subtraction underestimates the jet yield and can change the extracted jet shape.
- (8) If you extract angular dependence of jet w.r.t. R.P., the results will easily be affected by the choice of $v_{2,4}$ from (5).

Back-up slides

ShinIchi Esumi, Univ. of Tsukuba 18

R.P. resolution = 1

R.P. resolution ~ 0.75

R.P. biased by jet-correlation

R.P. biased by jet-correlation (random r.p. mixing)

Simulation without R.P. bias

Simulation with R.P. biased by jet-correlation

