Jet - flow(v_2) correlation

ShinIchi Esumi Inst. of Physics, Univ. of Tsukuba

v₂ - R_{AA} hydro, N_{quark} scaling energy loss, re-distribution di-hadron correlation mach-cone like shape reaction plane dependence left-right asymmetry forward-backward asymmetry

Jet suppression \rightarrow modification with 2-particle $\Delta \phi$ correlation

h-h correlation at "p+p 200GeV" vs "Au+Au 200GeV central 0-20%"

^{2009/}Sep/15, flow workshop, ECT* Trento

ShinIchi Esumi, Univ. of Tsukuba

RP dependent correlations

QM09, C. H. Chen

^{2009/}Sep/15, flow workshop, ECT* Trento

Shinlchi Esumi, Univ. of Tsukuba

200GeV Au+Au -> h-h (run7)($p_T^{Trig}=2\sim4$ GeV/c, $p_T^{Asso}=1\sim2$ GeV/c)

QM09, B. Betz

ShinIchi Esumi, Univ. of Tsukuba

2009/Sep/15, flow workshop, ECT* Trento

ShinIchi Esumi, Univ. of Tsukuba

Both near/away shapes show a strong v2 (in-plane preference) as well as a strong left/right asymmetry (in-plane preference) Ridge/Mach-cone like correlated pairs have been known to show similar properties as bulk in terms of inverse slope (apparent temperature) and particle ratios (Baryon/Meson)

Summary

- 1) Gamma / Jet / hadron triggered correlation analysis as a function of centrality and R.P.dependences gives us the QGP tomography.
- 2) Mach-cone and Ridge like shape w.r.t.
 - a) geometrical suppression from energy loss,
 - b) re-distribution of the lost energy,
 - c) connection with flow/expansion dynamics
 - d) transverse, longitudinal and radial(surface) direction
- 3) Low $p_T v_2$ can be biased by the triggered jet. associated particle $v_2^{hard} > inclusive v_2^{all} \geq thermal v_2^{soft}$
- 4) Global understanding of R_{AA} , v_2 from low p_T (flow) to high p_T (suppression), especially soft-hard interplay at middle p_T region (jet without any flow subtraction?).

200GeV Au+Au -> h-h (run7)($p_T^{Trig}=2\sim4$ GeV/c, $p_T^{Asso}=1\sim2$ GeV/c)

2009/Sep/15, flow workshop, ECT* Trento

 $\phi_{ASSO} - \phi_{TRIG}$ (rad)

ShinIchi Esumi, Univ. of Tsukuba

AMPT (v1.11, parton cascade with string melting v2.11) Au+Au at sqrt(s_{NN})=200GeV

Shinlchi Esumi, Univ. of Tsukuba

AMPT

AMPT(v1.25/v2.25 string melting) : Au+Au 200GeV b=7fm (with embedding option)

Z.W.Lin, J.Jia, S. Mohapatra, S. Esumi

mixed events with the same triggered (embedded) events

ShinIchi Esumi, Univ. of Tsukuba

Direct γ - hadron coincidence

QM09, M. Connors

Improvement in jet energy resolution

