Interplay between jet and v₂

ShinIchi Esumi Inst. of Physics, Univ. of Tsukuba

measurements and simulations

shape(1) =
$$f_1(x)$$

shape(2) = $f_2(x)$
shape(3) = $f_3(x)$
shape(4) = $f_4(x)$
shape(5) = $f_5(x)$ = $f_4(-x)$
shape(6) = $f_6(x)$ = $f_3(-x)$
shape(7) = $f_7(x)$ = $f_2(-x)$
shape(8) = $f_8(x)$ = $f_1(-x)$

Simulation

RHIC 200GeV Au+Au, mid-central collisions at mid-p_T region (1-4 GeV/c) with $v_2 = 0.1 \sim 0.2$

* Significant semi-hard (mini-jet) fraction relative to soft-thermal contribution

~ several*10%

- * Significant v_2 effect from the semi-hard component relative to soft-thermal particle v_2 ~ several*10%
- * Significant smearing on jet shape even with $\sigma_{R.P.} \sim 0.7$ But it's not really because of poor accuracy of E.P. angle, it's more because mini-jets push up the inclusive v_2 which is subtracted.
- * RHIC data analysis is in progress...
- * E.P. can also be biased by correlated pair even with large η gap...

(2) If there are two parallel b-t-b jets, away side of one b-t-b jet can be near side of the another b-t-b jet.

- (3) Suppression as well as modification of b-t-b jet would depend on relative angle w.r.t. almond geometry, we know this from v_2 measurement and believe this is the major source of v_2 at high p_T .
- (4) Therefore, there should be inter b-t-b jets correlation give by the geometry from (3), this could make near side ridge like effect, especially if the effect (3) has shaper dependence than $v_2(=\cos 2x)$.
- (5) We always measure inclusive v_2 , which includes the effect (3). Therefore any modification which could generates the elliptic anisotropy would be included in the measured v_2 .
- (6) We subtract BG contribution with this v_2 from (5) by maximizing BG contribution assuming zero jet yield at minimum at any $d\phi$.
- (7) If near and away side jets overlap each other, this subtraction underestimates the jet yield and can change the extracted jet shape.
- (8) If you extract angular dependence of jet w.r.t. R.P., the results will easily be affected by the choice of v_2 from (5).

