What We Have Learned from the Measurement of Azimuthal Anisotropy of Identified Particles in Relativistic Heavy Ion Collisions

Maya Shimomura University of Tsukuba

Contents

- **◆**Introduction
 - Azimuthal Anisotropy
 - Time Evolution
- **♦**Results
 - Fundamental Findings of v₂ at RHIC
 - Systematic Study of v₂
 - Blast-Wave Model Fit
- **♦**Summary

Azimuthal Anisotropy, Elliptic Flow (v₂)

Momentum anisotropy reflects the hot dense matter.

Fourier expansion of the distribution of produced particle angle (ϕ) to reaction plane (Ψ)

$$N(\phi) = N_0 \{ 1 + 2v_1 \cos(\phi - \Psi) + 2v_2 \cos[2(\phi - \Psi)] + \dots \}$$

$$v_n = \langle \cos[n(\phi - \Psi)] \rangle$$

 v_2 is the coefficient of the second term \rightarrow indicates ellipticity

v₂ measurement has been considered as a powerful probe for investigating the property of the QGP.

Time Evolution

The matter produced in the high energy heavy ion collision is expected to undergo several

stages from the initial hard scattering to the final hadron emission.

Hadron gas

Mixed phase

QGP

pre-equilibrium

Collision

Kinematical freeze-out

Chemical freeze-out

Hadronization Expansion & Cooling

Thermalization

Hard scatterings

When the matter is thermalized, we expect

Hydro-dynamical behavior at quark level .

Note whenever the matter interacts each other, v_2 could change.

Need a comprehensive understanding from

thermalization through hadronization to freeze-out.

October, 15, 2009

3rd Joint Meeting of APS and JPS

Fundamental Findings of v₂ at RHIC

- Hydro-dynamical behavior
- Quark recombination

v₂ explained by hydro model

Mass Ordering: v2()>v2(K)>v2(p)

→ Existence of radial flow.

Single particle spectra also indicates radial flow.

v₂ at low p_T (<~2 GeV/c) can be explained by a hydro-dynamical model assuming:

→ Early thermalization(~0.6 fm/c)

convex shape due to radial flow.

PHENIX: Au+Au: PRC **63**, 034909 (2004); p+p: PRC**74**, 024904 (2006)

Quark recombination (quark number scaling)

 $v_2(p_T) / n_{quark}$ vs. KE_T / n_{quark} becomes one curve independent of particle species.

Significant part of elliptic flow at RHIC develops at quark level.

the quark number scaling everywhere

Quark number scaling work out up to K_{ET} ~1GeV/c.

quark number scaling at SPS

v₂ of p, , - C. Alt et al (NA49 collaboration) nucl-ex/0606026 submitted to PRL v₂ of K⁰ (preliminary) - G. Stefanek for NA49 collaboration (nucl-ex/0611003)

Pb+Pb at 17.2 GeV, NA49

A. Tranenko's talk at QM06

- Quark number + K_{ET} scaling doesn't seem to work out at SPS.
- No flow at quark level due to nonexistence of QGP?

For a more comprehensive understating of the matter and the mechanism of v2 production...

Systematic study of v₂

- Energy dependence
- System size dependece
 - -Au+Au vs. Cu+Cu
 - -Centrality dependence

Energy dependence Au+Au 200 vs. 62 GeV

No significant difference between 200 and 62 GeV.

Energy dependence up to RHIC

FOPI: Phys. Lett. B612, 713 (2005). E895: Phys. Rev. Lett. 83, 1295 (1999) CERES: Nucl. Phys. A698, 253c (2002). NA49: Phys. Rev. C68, 034903 (2003) STAR: Nucl. Phys. A715, 45c, (2003). PHENIX: Preliminary.

PHOBOS: nucl-ex/0610037 (2006)

- ~ 50% increase from SPS to RHIC.
- Above 62.4 GeV, v₂ seems to be saturated.
- → The matter reaches thermal equilibrium state at RHIC.

Au+Au vs. Cu+Cu

Compare v_2 normalized by eccentricity (ϵ) in collisions of different size.

Eccentricity scaling suggests early thermalization.

There is a strong N_{part} dependence.

N_{part} Scaling

Dividing by N_{part}^{1/3}

v₂/eccentricity/N_{part}^{1/3} scaling works for all collision systems except small N_{part} at 62 GeV.

- This exception may indicate non-sufficient thermalization region.

Universal v₂

Taking all scaling together,

- Different Energy and System
 (AuAu200, CuCu200, AuAu62)
- ◆ Different Centrality (0-50%)
- Different particles (π/ K /p)

2/ndf = 2.1 (with systematic errors)

Then, we have a question ! If the matter is thermalized and the pressure gradient produce the flow, what is the reason for N_{part} dependence of v_2 ?

Blast Wave Model Fit

Blast-wave Model Fitting

Blast-wave model (local thermal equilibrium + collective transverse expansion) successfully describes the single particle spectra. * Ref: PRC48(1993)2462

$$\frac{dN}{m_T dm_T} \propto \int_0^R r dr m_T K_1 \left(\frac{m_T \cosh \rho}{T_{fo}} \right) I_0 \left(\frac{p_T \sinh \rho}{T_{fo}} \right) \qquad \rho = \tanh^{-1} \beta_T$$

$$\beta_T = \beta_s \left(\frac{r}{R} \right)$$

Thermal freeze-out temperature, T_{fo} and transverse velocity, β_{T} are extracted from this model fitting. (Normalization factor is also a free parameter)

Blast Wave Fitting for v₂ and Spectra

We use this well-known fitting technique to obtain the information of the flow velocity and temperature in and out-of plane **separately**.

Fitting p_T distribution in and out-of plane *separately* for $\pi/K/p$ simultaneously by blast wave, β_T and T_{fo} in and out-of plane are obtained *separately*.

N_{part} Dependence of β_T and T_{fo}

 β_T is clearly different between in and out-of plane. T_{fo} and β_T agree between Au+Au and Cu+Cu, especially for the in-plane.

Since v_2 is produced by the difference between in and out-of plane, the modulation of β_T is expected to have important rule to make v_2 .

Modulation of radial flow velocity

 β_{T2} – Modulation amplitude of the second harmonic of the β_{T}

$$\beta_{T2} = (\beta_{T}^{in} - \beta_{T}^{out}) / (\beta_{T}^{in} + \beta_{T}^{out}) / 2$$

$$0.15$$

$$0.05$$

$$AuAu \ 200 GeV$$

$$0.11 \ fit \ (N_{part} > 40)$$

$$0.10 \ fit \ (all \ points)$$

$$N_{part}$$

 β_{T2} scaled by eccentricity agrees between Au+Au and Cu+Cu . β_{T2} /eccentricity is flat at $N_{part} > 40$. $\rightarrow \epsilon$ drives β_{T2} ! . \rightarrow Signal of Thermalization !?!? v_2 is proportional to β_{T2} if other parameters are fixed.

BUT, v_2 / eccentricity is "not" flat \rightarrow What does course N_{part} dep. of v_2 ??

Freeze-out Temperature and v₂

T_{fo} depends on N_{part} (while T_{ch} doesn't)!

Larger system size \rightarrow Lower $T_{fo} \rightarrow$ Steeper spectra \rightarrow Larger v_2

Why does larger system have lower freeze out temperature?

Freeze-out Temperature and Time

[Assumption]

- -Cylindrically expanding
- -Freeze-out condition: $\lambda(t)=R(t)$

The model explains N_{part} dependence well!

The times until freeze-out can be calculated by this model. Larger system takes more time to freeze-out. \rightarrow This makes lower T_{fo}

Summary

- Systematic study of v_2 have been done in Au+Au/Cu+Cu at $\sqrt{s_{NN}}$ = 62.4/200 GeV.
- v₂ values are saturated above 62.4 GeV in Au+Au.
 - Local thermalization
- $v_2(p_T)$ follows quark number + KE_T scaling in Au+Au (200,62GeV) and Cu+Cu (200GeV) .
 - Flow at quark level → QGP phase
- $v_2(N_{part})$ / ϵ are same between Au+Au and Cu+Cu at 200 GeV.
 - Eccentricity scaling → Early thermalization
- $v_2(p_T) / \epsilon / N_{part}^{1/3}$ scaling works except for small N_{part} at 62 GeV.
 - Existence of a universal v₂ scaling at RHIC
 - Exception may indicate non-sufficient thermalization region.
- <From Blast-wave fit results with v₂ and spectra together>
- β_2 /eccentricity is constant not depending on system size ($N_{part} > 40$).
 - Early thermalization!
- Larger system freezes out later at lower temperature.
 - cause the N_{part} dependence of $v_{\text{2}}/$ ϵ .

Scaling (others)

- Straight line from SPS to RHIC energy.
- v₂ is reaching the hydro limit at central collision?

LHC may have answer for this!