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Azimuthal Anisotropy, Elliptic Flow (v,)

At non central collision Reaction plane (V)

z7
3 (Small mean free path\

Thermalization

*Pressure gradient -
. . \\\/Ellipticflow |
Geometrical anisotropy | > Momentum anisotropy
Momentum anisotropy reflects the hot dense matter.

Fourier expansion of the distribution of produced particle angle (¢) to reaction plane (\V)

N (¢) = N, {1+ 2v, cos(¢ — ) + 2V, cos[2(¢ — ) | +...}
v, =(cos[n(¢—¥)])

V/, is the coefficient of the second term — indicates ellipticity

Vv, measurement has been considered as a powerful probe for

Investigating the property of the QGP.
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Time Evolution

stages from the initial hard scattering to the final hadron emission.

t

\ Freeze-Out

Mixed phase

QGP

pre-equilibrium
Collision

When the matter is thermalized, we expect
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The matter produced in the high energy heavy ion collision is expected to undergo several

Kinematical freeze-out

Chemical freeze-out

Hadronization
Expansion & Cooling

Thermalization

Hard scatterings

Hydro-dynamical behavior at quark level .
Note whenever the matter interacts each other, v, could change.
Need a comprehensive understanding from
thermalization through hadronization to freeze-out.




Fundamental Findings of v, at RHIC I

*Hydro-dynamical behavior
*Quark recombination
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Vv, explained by hydro model

g
PH ENIX PRL 91, 182301
f - Run2 Au +Au atﬁ 200 GeV, Mlnlmum Blalas Il < 035 1 V2 at l_OW Pr (<~2 GeV/ C) Car_] be
£ os[ axen 1 explained by a hydro-dynamical
E [ mKkeK 7 model assuming:
s [ ° p+p ] -> Early thermalization(~0.6 fm/c)
0.2— o
> — _
n B ) g .
o - — hydro = . positive negative
vt ~ 4 & I rrrrTTT T HL L L B
O o1 | >0 i PP
L L — hydro K 1 R foe ie o % (au)
c | i NQ i ‘. 1 .. o K (a.u.)
< - — hydro p i ‘E" .92. 889. ;uf;z'l(lﬁ}-s'm
0 -C’,_m - A 1 o . n'.x 10
| ! 1 ! | 1 ! ! | 1 1 -8' Eb‘:::. ‘.%h:ﬁ :K xoﬁj
0 2 4 Z | m y %, PO
S o T %, %
Transverse momentum p; (GeV/c) g | ‘ﬂg::,“‘nzg.n_.;..&. = ;.u__h.a.(,.m
- . N0F g, o ., T m, .
Mass Ordering: v2(1T)>Vv2(K)>v2(p) A AN » i * .
—> Existence of radial flow. N L
Single particle spectra also indicates e ’2G w:; o 2'6 ws
radial flow. (e T RESE) M Mo (BEVIE)
convex Shape due to radlal ﬂOW PHENIX: Au+Au: PRC 63, 034909 (2004);

p+p: PRC74, 024904 (2006)

October,15, 2009 3rd Joint Meeting of APS and JPS




Quark recombination (quark number scaling)

PHENIX PRL.98, 162301 (2007) Au+Au, Vs, = 200GeV

T T T 1 LI L L N A I e L L L O I
03l # r*+1 (PHENIX) KS (STAR) O A+X (STAR) i

| B K'+K (PHENIX) b p+p (PHENIX} [1=+Z (STAR) _lo.1

- - - - E

- A :._..'. P | _ %

! I gl _|o.05>

B - .i";l - T

I 1 1 I : | L | | 1 1] | | I I | | 1111 | | v b by by u

o 40 1 2 3 4 0 0.5 1 1.5 2

P (GeVic) KE, (GeVic) KE./n, (GeVic) KE;=msm,

Vo(P1) Mgyark VS- KEL/N becomes one curve independent of particle species.

quark
Significant part of elliptic flow at RHIC develops at quark level.

October,15, 2009 3rd Joint Meeting of APS and JPS 7




the quark number scaling

____everywhere

AUAU 62.4GeV Au+Au 200 GeV (Run?)

W, im, e KE, i, , Centraity: 05 % Vo, v KE =, | Comtratny: 598 % A
=7 —— Fa e i
a3 — A3 T WE ke Fees A b e
STAR - Ly = asal *
ousk Ol PHENIX PRELIMINARY E PP e —pep [ g
g t s . est i
0.2% 025+ E . N E -z aml e _mom ®
0AE Aurhu pe03s Fosezasey  * T Auraw, <035, s szdcey ¢ RTOF E o Auvau, ppens, {B_= 624 Gav E S EL LA P E mcREtCeasae 9 k L
s Loy K o o KT i A= s P : ::: et asaf t-“-‘
" " K 02 ok " KTOF 02 . -3 L weat I
0al- h A .k f kel ;J/‘?:lENIX Preliminary F/" '"7/”
Gk | _ » b o . anf- L A= T i e S = e
4 i ¥, T, va REm, Conmaity: 1530 % | Ty e R g, Eariate SIS | T R P R T
i 7 ‘ﬁ e £ . £ e = e
noo s —— K e K e K. E -
s iﬁ? %00 v - s peB F e o Kk
- 1 - E L " b T
- o T , - asal '.“F' anef - o
e - ..é"" . ;u"‘ b o
- wnt
n: 1 2 nl [] nsak
P, [Gevte] —_— E
1 22 n bl (>} LX) X3 (L) £l i) £
0. £ . oer
2 aen waaf L
0-10 % 10-20 % 20-30 % m K+K ] i lu:: e . .
T T T = - -, R e = [ - m m-"_
Cutu 200GaV, 0,35 Cuu M0GeV, [j<0,35 Cuu 200GaY, if<0.35 oo v ¥ ) ,F. ; it .-d"" - ) ._;; ...-d" - h
i, KE I, KE, VA KE, 0.2 # " asef s
] 0.1 018 i ‘# . it }’-

, [ o 3,1.5-*" Lot o AU+AU 200GeV (Run?)
01 IS reliminan

0 . ] - + Wl ] - OgMieT M. Oldin burg B or R 0~60%
EUN s ‘ f‘ o' Q STanenty 0_1'_ PHENIX Preliminary o
i ] ; 5 M ; s o M ; T % I I — i - n'lsl I -Il = 15 : 0 K*"K-
) {m_sm Ve P T e am Al TaVI] ) {m,-my)in .[Gs\ﬂ;] KEr (GBV] KE.,II'I (GeV) L] pii

= Cu+Cu 200GeV eV, (AUAU 200GeV) y—

. - . QMO9, A. Taranenko. - i [ =00 rﬁ % ]
g 4 0.1 T 06 = : __'_' " -- LR L @J * § +

o - oy ’ -
Wit \ w4 K
o084 v 1 04
. |

AR

W5 ; s L] [ ; 15
{m_-m,}in, [GeVic] (m,-m,)in [GeVic]

e 12 3 & 1 3 3 m8 &% 18 48 5 1 15
Py GeWVTCh WE, (G DE, b, $Ga) KE, In (GeV)

Quark number scaling work out up to K+ ~1GeV/c.
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guark number scaling at SPS
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v, of p, 1T, /A - C. Alt et al (NA49 collaboration) nucl-ex/0606026 submitted to PRL

v, of KO (preliminary) - G. Stefanek for NA49 collaboration (nucl-ex/0611003)

Pb+Pb at 17.2 GeV, NA49
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Quark number + K scaling doesn’t seem to work out at SPS.
No flow at quark level due to nonexistence of QGP ?
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For a more comprehensive understating of the matter and the mechanism of v2 production...

Systematic study of v,

*Energy dependence

eSystem size dependece
—Au+Au vs. Cu+Cu
—Centrality dependence

October,15, 2009 3rd Joint Meeting of APS and JPS
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Energy dependence
Au+Au 200 vs. 62 GeV

Centrality dependence Identified particles

—_— ————  PH ENIX Vv, vs. p; for n/K/p
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No significant difference between 200 and 62 GeV.
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Energy dependence up to RHIC

FOPI : Phys. Lett. B612, 713 (2005). E895 : Phys. Rev. Lett. 83, 1295 (1999)

CERES : Nucl. Phys. A698, 253c (2002). NA49 : Phys. Rev. C68, 034903 (2003)
STAR : Nucl. Phys. A715, 45c, (2003). PHENIX : Preliminary. PRL 94, 232302
PHOBOS : nucl-ex/0610037 (2006)
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~50% increase from SPS to RHIC.
Above 62.4 GeV, v, seems to be saturated.
- The matter reaches thermal equilibrium state at RHIC.
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Au+Au vs. Cu+Cu

Compare v, normalized by eccentricity (g) in collisions of different size.
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early thermalization.
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N

part

Scaling

vV, Vs. N
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The dependence can be normalized by N

0.3

01
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. at 62 GeV.

v,/eccentricity/N,,** scaling works for all collision

systems except small N,
- This exception may indicate non-sufficient thermalization region.
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ol Dividing by N, '3
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Universal v,

Taking all scaling together, # Different Energy and System
(AuAu200, CuCu200, AuAu62)
9% | woweesd e | # Different Centrality (0-50%)
Toof e gy ] & Different particles (n/ K /p)
*UJQ i Cu+Cu :small A p+p i
£ | | | e o0 {} 45 curves
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X2/ndf = 2.1 (with systematic errors)
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Then, we have a question !

If the matter Is thermalized and the pressure
gradient produce the flow, what is the reason for
N ot dependence of v,?

Blast Wave Model Fit

October,15, 2009 3rd Joint Meeting of APS and JPS
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Blast-wave Model Fitting

Blast-wave model (local thermal equilibrium + collective transverse
expansion) successfully describes the single particle spectra.  * Ref: PRC48(1993)2462

: =tanh™p
R m.. cosh sinh P T
— @ jo rdrm, K | — P l, Pr S0P "
m;dm; T T B. =B, (E]
S TR e T gt . y
% 103%‘ b T, =0.108 B, =0.77_ ‘ fo-o1oa By -077‘_ RS eeof ght
g 10;_ %"-. _ _ H _
& S A Thermal freeze-out
v | temperature, T;, and
:: . Ky 1ok transverse velocity, B are
BN N TRIRERRIN: | NI extracted from this model
0 05 115 2 25 3 35 4) 05 1 15 2 25 3 35 4 1t c g 2
PRC89.034909(2004) PrISeVi o [oovie fitting. (Normalization factor is also a

free parameter)
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Blast Wave Fitting for v, and Spectra

We use this well-known fitting technique to obtain the
Information of the flow velocity and temperature in and
out-of plane separately.

Measured spectra weighted by ¢ distribution

Measured v, Me‘{isured p+ Sspectra In/‘r:)ut-of plane spectra

A - %

i o

o Ke)

S >

ﬁ < |2 — |

= o

o =

—
g > pT'
Pr Pt

Fitting p; distribution in and out-of plane separately for
n/K/p simultaneously by blast wave, 3+ and T, in and out-
of plane are obtained separately.
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N,.« Dependence of B, and T,

part

‘ ﬁT vs. N, (AuAu + CuCu,\ S = 200 GeV) Tio vs. Ny (AuAu + CuCu,\[s,, = 200 GeV) |
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part

B+ Is clearly different between in and out-of plane.
T;, and B agree between Au+Au and Cu+Cu, especially for the in-
plane.

Since v, is produced by the difference between in and out-of plane,
the modulation of B; is expected to have important rule to make v.,.

October,15, 2009 3rd Joint Meeting of APS and JPS 19




Modulation of radial flow velocity

B+, — Modulation amplitude of the second harmonic of the 3,
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B, scaled by eccentricity agrees between Au+Au and Cu+Cu .

Br./eccentricity is flat at N

part

V, is proportional to 3, if other parameters are fixed.

BUT, v,/ eccentricity is “not” flat > What does course N
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> 40. - e drives B.,! . >Signal of Thermalization !?1?

oart d€P. Of v, 27
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Freeze-out Temperature and v,

3 o T oy s o =  Apparent
200 optaine statistical mode = atter spectra i
s 0 e y i A P Temperature | v,
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140 . = S . g
ERE high ~ small
C 7 o !
100- ] 3 :
r Au+Au s, = 200 GeV . '
60 ®  Kinetic Freeze-out = :
a0 o Chemical Freeze-out 7 % :
- Freeze-out model (finite [3_) . :
20— | Freeze-out model ( _=0) .
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s . > i
Dr. M.Konno’s thesis Npart o i
o !
o !
S low | large
o !
T;, depends on N, é 5
= y — :
(while T, doesn’t) ! : ;
i Pt ;

Larger system size = Lower T, = Steeper spectra - Larger v,
Why does larger system have lower freeze out temperature ?
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Freeze-out Temperature and Time

Dr. M.Konno’s thesis
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The times until freeze-out can be
calculated by this model. Larger system
v L takes more time to freeze-out. >This
Chamis s * makes lower T,

— Freeze-out model (finite BT)
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Summary

Systematic study of v, have been done in Au+Au/Cu+Cu at s, =
62.4/200 GeV.

Vv, values are saturated above 62.4 GeV in Au+Au.
— Local thermalization

,(p7) follows quark number + KE; scaling in Au+Au (200,62GeV) and
Cu+Cu (200GeV) .

— Flow at quark level = QGP phase

Vo(Npore) / € are same between Au+Au and Cu+Cu at 200 GeV.
— Eccentricity scaling = Early thermalization

V,(Pr) /e/N,'2 scaling works except for small N, at 62 GeV.
— Existence of a universal v, scaling at RHIC
— Exception may indicate non-sufficient thermalization region.

<From Blast-wave fit results with v, and spectra together>

B,/eccentricity is constant not depending on system size (N_,.>40).

— Early thermalization !

Larger system freezes out later at lower temperature.
— cause the N, dependence of v,/ ¢ .

part
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Scaling (others)
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} I
| | |
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o Straight line from SPS to RHIC energy.
* V, IS reaching the hydro limit at central collision ?

LHC may have answer for this !
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