Elliptic flow measurements of J/Psi and light hadrons in 200AGeV Au+Au collisions at RHIC–PHENIX

Yoshimasa Ikeda
for the PHENIX collaboration
(University of Tsukuba)
Azimuthal anisotropy

Spatial anisotropy in non-central collision provides azimuthal anisotropy of particle emission.

The large anisotropy is an evidence of the formation of a hot and dense partonic matter.

\[
\frac{dN}{d\Phi} \propto 1 + 2v_2 \cos 2(\Phi - \Psi)
\]

\(\Psi\) : reaction plane angle
Motivation of v_2 measurement

Large v_2 was observed in RHIC

The values agreed with hydro-dynamical models

It suggests rapid thermalization and quark flow.
The values of v_2 are in proportion to the number of quarks.

-heavy particle shifts to high p_T

-These agree very well by kE_T/n_q scaling at low p_T range.

\[
K E_T = \sqrt{(M^2 - P_T^2)} - M
\]
New reaction plane detector “RxP”

PHOBOS, PRL. 91, 052303 (2003)

RxP measure more particles and the particles with more large v_2.

RxP : $\eta = \pm 1\sim 2.8$ (blue)
BBC : $\eta = \pm 3.1\sim 4$ (red)
New Reaction Plane Resolution

\[v_2 \text{ plane} \]

| Reaction Plane | \(|\eta|\) |
|----------------|---------|
| RxPinner | 1.5 - 2.8 |
| RxPouter | 1.0 - 1.5 |
| MPC | 3.0 - 4.0 |
| BBC | 3.1 - 3.9 |
| CNT | 0 - 0.35 |
| SMD | > 6 |

\[v_{2\text{observe}} = v_{2\text{real}} \times \left\langle \cos 2 \left(\Psi_{\text{real}} - \Psi_{\text{observe}} \right) \right\rangle \]

\[\delta v_2 \sim \frac{1}{\left\langle \cos 2 \left(\Psi_{\text{real}} - \Psi_{\text{observe}} \right) \right\rangle} \times \frac{1}{\sqrt{N}} \]
How to get PID v_2 (deuteron)
\[v_2 \text{ before and after} \]

Before (Run4)
- BBC RP resolution (< 0.4)
- 0.8 billion events

After (Run7)
- Better resolution of RxP (< 0.75)
- Higher statistical (3.5 billion)
Quark number and KE$_T$ scaling

$$KE_T = \sqrt{(M^2 - P_T^2)} - M$$

The v_2 of proton and anti-proton show clear deviation from the number of quark scaling at KE$_t$/n 1 GeV. This may indicate a change of particle production mechanism.
Heavy flavor and J/ψ v_2

The data at low p_T favor the models that include quark level elliptic flow of charm.

B meson decay becomes a significant source above 2.5 GeV/c
Summary

RxP has worked very well during the PHENIX Run7 period and demonstrated the design performance.

- resolution is improved by a factor of two (0.4 \Rightarrow 0.75)

We are analyzing the data with RxP.

- π, K, proton, deuteron, single electron and J/Ψ have been measured and also preparing for the publications.

(Anti)Proton show clear deviation from mesons.

Please wait for Λ and Φ.
Back up
Reaction Plane Detector (RxP)

The reaction plane detector was installed just before Run7 (2007).
Correlation effect

v_2 is over estimated by correlation effect.

According to HIJING+PYTHIA, the effect by jet does not have any problem with $\eta>1.5$
Design and Geant simulation

Detector parameters were optimized with Geant simulation

Thickness
- Scintillator 2cm
- Converter 2cm

Φ division into 12

π0 → 2γ (98.8%) ct=25.1[nm]
Configuration of RxP