LHC-ALICE実験における back-to back ジェットの観測と再構成

筑波大学高エネルギー原子核実験グループ 筑波技術大学A 坂田洞察 稲葉基A 江角晋一 木村瑞希 金野正裕 佐野正人 関根裕輝 竹内理将 中条達也 轟木貴人 三明康郎 横山広樹 渡辺健悟

Outline

- Introduction
 - Jet Quenching
 - Gamma-Jet & DiJet
 - J-Cal Project
- Analysis
 - Detector performance
 - Energy balance resolution
 - Jet $\Delta\phi$ resolution
 - Physics performance [Quench effect]
 - Energy balance resolution
 - Jet $\Delta\phi$ resolution
- Conclusion

Jet quenching

- Jet quenchingはQGP物性 の直接的な探針になり得る
- Mach Cone
- E loss in QGP (jet quenching)
 - collisional E loss
 - radiative E loss

⇒Tomography

通過距離とエネルギー損失を比較
 することによって、QGP物性を理解
 ⇒多数のBack-to Backジェット
 を必要とする

Back-to Back Jet: Gamma-Jet & DiJet

- Gamma-Jet
- Quark Jet
- Low Rate
- 初期エネルギーの測定可能
- 衝突位置測定不能

- Di-Jet
- Gluon is dominant
- Higher Rate
- -初期エネルギーの測定不能
- 衝突位置測定可能

Back-to Back Jet performance

Jet Tomography を行うに当り エネルギーバランス分解能
通過距離
の情報が必要

Detector Performance

- Jet $\Delta \phi$ resolution
- Jet Energy balance resolution
- Physics Performance [model comparison]

with J-Cal

E_{part}^B

E_{loss}^B

E_{iet}^B

- Jet $\Delta \phi \,$ resolution
- Jet Energy balance resolution

 $E_{\text{part}}^{A} E_{\text{loss}}^{A} E_{\text{jet}}^{A}$

Jet $\Delta \phi$ resolution

PYTHIA 8 simulation Finding: CellJet Cone Radius = 0.2

Detector resolution Included.

ジェットのΔφ分解能はB-to B jet のkinematicsによって決まり 検出器の依存性は殆どない。 100GeV以上のJetでは 角度にして7deg以下の分解能である

Back-to Back Jet

energy balance resolution

PYTHIA 8 simulation Finding:CellJet Cone Radious = 0.2 $eT_{jet}Min = 20GeV$

Detector resolution Included.

$$E_{balance} = \frac{E_T^1 - E_T^2}{1/2 \cdot (E_T^1 + E_T^2)}$$

J-Cal の導入によって20%程度 Energy balance resolution が向上

PYQUEN

PYQUEN : 高エネルギー原子核実験用イベントジェネレーター

[to study parton Energy Loss in medium] http://lokhtin.web.cern.ch/lokhtin/pyquen/

Hard part: PYQUEN (modifies PYTHIA6.4 for jet quench effect)

Jet $\Delta \phi$ resolution

∆ ¢ [Jet-Jet]

PYTHIA 6 & PYQUEN Finding:CellJet Cone Radius = 1.0 $eT_{iet}Min = 20GeV$

Quenchの効果によって、 やや分解能は悪化する

Back-to Back Jet energy balance resolution

PYTHIA 6 & PYQUEN Cone Radius = 1.0 $eT_{iet}Min = 20GeV$

$$E_{balance} = \frac{E_T^1 - E_T^2}{1/2 \cdot (E_T^1 + E_T^2)}$$

Quenchの効果によって、 Energy balance resolution は 10-20%程度悪化する

Conclusion

Detector performance

Jet $\Delta\phi$ resolution

Back-to Back Jet の角度分解能は検出器の効果に殆ど依存しない。 Energy balance resolution

J-Calの搭載により、分解能が20%程度向上する

Physics performance

Jet $\Delta\phi$ resolution

Back-to Back Jetの角度分解能はquenchの効果に殆ど依存しない Energy balance resolution

中心衝突でのquench効果で10-20%程度悪化する

To Do

Centrality依存性 高粒子多重度環境下での評価

BACK UP

HYDJET++

HYDJET++ : 高エネルギー原子核実験用イベントジェネレーター <u>http://lokhtin.web.cern.ch/lokhtin/hydjet++/</u> Hard part: PYQUEN (modifies PYTHIA6.4 for jet quench effect) Soft part: HYDJET++ (soft production with radial & elliptic flow effects)

HYDJET++の有用性:原子核原子核衝突において特徴的な

Jet quenchingの効果とFlowを両方含んでいる

14

HYDJET++ と STAR AuAu 200GeVの比較 (pT分布)

Set Parameter (LHC default)		
A :207(Pb)		
CME : 5500GeV		
Set :hydro + pyquen	Ì	
hard(&quenching)	soft	
pthatmin: 7.GeV/c	nuc	I. shadowing : on
T0 : 0.8GeV	Tf	:130MeV
т(sigma) :0.1fm/c	Тс	:170MeV
# of active flavor:0	тtf	:10fm/c
	max	ly flow:4.
	max	ty flow:1.1

Reaction Plane determination [HYDJET]

