Measurement of Azimuthal Anisotropy with the New Reaction Plane Detector in the PHENIX experiment

Yoshimasa Ikeda for the PHENIX collaboration (University of Tsukuba)

Azimuthal anisotropy

Spatial anisotropy in noncentral collision provides azimuthal anisotropy of Particle emission.

The large anisotropy is an Momentum anisotropy A hot and dense partonic matter.

$$\frac{dN}{d\Phi} \propto 1 + 2v_2 \cos 2(\Phi - \Psi)$$

 Ψ : reaction plane angle

Motivation of v_2 measurement

Large v_2 was observed in RHIC

The values agreed with hydro-dynamical models

It suggests rapid thermalization and quark flow.

KE_{T} and quark number scaling

- The values of v₂ are in proportion to the number of quarks
- heavy particle shifts to high p_T
- These agree very well by KE_τ/n_q scaling at low p_τ range.

$$KE_T = \sqrt{(M^2 - P_T^2)} - M$$

Reaction Plane Resolution

- Reaction plane resolution was ~0.4 before the introduction of the reaction plane detector.
 - The observed v₂
 strength is only less than 40% of its real value.
 - statistical power less than 1/6.

Reaction Plane Detector (RxP)

The reaction plane detector was installed just before Run7 (2007).

Acceptance of "RxP"

and the particles with more large v_2 .

RxP :
$$\eta = \pm 1 \sim 2.8$$
(blue)
BBC : $\eta = \pm 3.1 \sim 4$ (red)

New Reaction Plane Resolution

PID in PHENIX

v_2 before and after

Before (Run4)

BBC RP resolution (< 0.4) 0.8 billion events

After (Run7)

Better resolution of RxP (< 0.75) Higher statistical (3.5 billion) $_{10}$

Number scaling by quark or atom

 $v_2^d \sim 2 v_2^p$, $p_T^d \sim 2 p_T^p$

- Deuteron and proton are consistent almost on the number scaling.
- It is agree that the p and n have same v₂ and final state coalescence of them.
- Deuteron peak is expected at p_τ=6GeV/c.

KE_{T} scaling

- They are consistent between mesons or baryons.
- The values are decided by centrality, KE_T and quark number.
- Meson line and baryon line approach at high KE_T.

Quark number and KE_{T} scaling

- Consistent for all particles on KE_{T} and quark number scaling at KE_{T}/n_{q} <0.8GeV.
- They approach at high p_T. (deviate on KE_T/n_q scaling)
- This indicate a change of particle and v₂ production mechanism.

Heavy flavor and J/ ψ v₂

- The data at low pT favor the models that include quark level elliptic flow of charm.
- It could not be judged whether J/Psi succeeds the charm flow Because the poor statistics.
- B meson decay becomes a significant source above 2.5 GeV/c.

Summary

- The new reaction plane detector worked well.
 - Resolution is improved by a factor of two.
 - It means 4 times of statistic Power.
- Deuteron v_2 and p_{τ} are double of proton.
 - d and p are consistent on atom number scaling.
 - It agree the p-n coalescence in final state.
- v_2 is decided by centrality, KE_T and n_a on KE_T scaling.
 - Consistent for all particles on KE_{T} and n_{q} scaling at KE_{T} <0.8GeV.
- v_2 have no depend on particles at high p_T range.
 - Production mechanism is different.

 $v_2^d \sim 2 v_2^p$

 $p_T^d \sim 2 p_T^p$

Back up

Reaction Plane Detector (RxP)

The reaction plane detector was installed just before Run7 (2007).

Correlation effect

v₂ is over estimated by correlation effect.

According to HIJING+PYTHIA, the effect by jet does not have any problem with η >1.5

Design and Geant simulation

Detector parameters were optimized with Geant simulation

Thickness

Scintillator 2cm

Converter 2cm

 Φ division into 12

Configuration of RxP

