Measurement of azimuthal anisotropy and quark number scaling on AuAu200GeV at RHIC-PHENIX

Yoshimasa Ikeda for the PHENIX collaboration (University of Tsukuba)

Azimuthal anisotropy

Spatial anisotropy in noncentral collision provides azimuthal anisotropy of Particle emission.

The large anisotropy is an evidence of the formation of a hot and dense partonic matter.

$$\frac{dN}{d\Phi} \propto 1 + 2v_2 \cos 2(\Phi - \Psi)$$

$$\Psi : \text{ reaction plane angle} _2$$

Motivation of v_2 measurement

Large v_2 was observed in RHIC.

The values agreed with hydro-dynamical models.

It suggests rapid thermalization and quark flow.

The v_2 values are different for each particle.

v₂ on PHENIX-Run7

PID in PHENIX

Hadron v_2 on Run7

0.15

0.05

0.2 0.4 0.6 0.8

22

- D v₂ is higher than p v₂ at p_T > 3 GeV
- $\Lambda v_{_2}$ is consistent to p $v_{_2}$
- Φv_2 is near to meson (π or K) rather than baryon (p or Λ) at mid p_T range (p_T = 2 – 5 GeV).

(b)

1.2 1.4 1.6 1.8 2

p_T (GeV/c)

KE_{T} scaling

- They are consistent between mesons or baryons.
- The values are determined by centrality, KE_T and quark number.
- Meson line and baryon line approach at high KE_T.

Quark number and KE_{T} scaling

- Consistent for all particles on KE_{T} and quark number scaling at KE_{T}/n_{q} <0.8GeV.
- They deviate at high KE_T/n_q
- This indicate a change of particle and v₂ production mechanism.

Nucleon number scaling

 $v_2^d \sim 2 v_2^p$, $p_T^d \sim 2 p_T^p$

- D v₂ and p v₂ are consistent on p_T/A scaling.
- $p v_2$ and $n v_2$ are consistent.
- The peak of d v_2 is expected at p_T =6GeV/c.
- Coalescence of p-n or 6 quarks?

Summary

- The new reaction plane detector worked well.
 - We can see rare particles by the good resolution.
- $.v_2$ is depend on n_a on KE_T scaling.
 - Consistent for all particles on KE_{τ} and $n_{_q}$ scaling at $KE_{\tau}/n_{_q}{<}0.8GeV.$
 - $-\Phi v_2$ is same to other meson on KE_T.
- v_2 have no depend on the quark number at high p_{T} range.

- Production mechanism is different.

• d v₂ and p v₂ are consistent on parton number scaling $v_2^d \sim 2 v_2^p$ $p_T^d \sim 2 p_T^p$

10

Back up

Heavy flavor and J/ ψ v₂

- The data at low pT favor the models that include quark level elliptic flow of charm.
- It could not be judged whether J/Psi succeeds the charm flow Because the poor statistics.
- B meson decay becomes a significant source above 2.5 GeV/c.

Reaction Plane Detector (RxP)

The reaction plane detector was installed just before Run7 (2007).

Collision piont

Correlation effect

v₂ is over estimated by correlation effect.

According to HIJING+PYTHIA, the effect by jet does not have any problem with η >1.5

Design and Geant simulation

Detector parameters were optimized with Geant simulation

- Thickness
 - Scintillator 2cm
 - Converter 2cm
- Φ division into 12

Acceptance of "RxP"

and the particles with more large v_2 .

RxP :
$$\eta = \pm 1 \sim 2.8$$
(blue)
BBC : $\eta = \pm 3.1 \sim 4$ (red)

Configuration of RxP

Reaction Plane Detector (RxP)

The reaction plane detector was installed just before Run7 (2007).

Reaction Plane Resolution

- Reaction plane resolution was ~0.4 before the introduction of the reaction plane detector.
 - The observed v₂
 strength is only less than 40% of its real value.
 - statistical power less than 1/6.

Reaction Plane Resolution on Run7

KE_{T} and quark number scaling

- The values of v₂ are in proportion to the number of quarks
- heavy particle shifts to high p_T
- These agree very well by KE_τ/n_q scaling at low p_τ range.

$$KE_T = \sqrt{(M^2 + P_T^2)} - M$$