選択C「教養の新たな世界を体験する」

2010.8.5

時間	内容	担当
9:00~ 9:10	日程説明	三明、中井
9:10~10:20	講習(原子核)	三明
10:20~10:40	休憩	
10:40~12:00	講習(宇宙観測)	中井
12:00~13:00	昼食	中井、TA
13:30~15:30	JAXA見学	三明、中井、TA
16:00~16:40	認定試験	中井
16:40~17:00	アンケート	中井

選択C「教養の新たな世界を体験する」

筑波大学・数理物質科学研究科・物理学専攻

教授 三明康郎

目次

第1章 ビッグバン宇宙論

膨張する宇宙と、その証拠

第2章 宇宙元素合成

私たちの体を構成する元素はいつどこで?

第3章 加速器を用いた初期宇宙再現実験 ついに始まったLHC実験

KEK homepageより

なぜ夜空は暗いのか?

√宇宙が限りなく存在していれば、無限個の 星があるはず
●無限個の星からの光が届く?
●遠い星からの光は弱いから?
√私たちの目に入る星の光の量を足しあわせ てみよう!

- **√すべての星からの光の量を足しあわせる**
 - 距離 r の星からの光量; r²に反比例
 - 距離 r にある星の数 ; r²に比例

➡無限遠まで積分すると∞に!

$$Y_{\text{light}} = \int_{0}^{\infty} \rho(r) dv$$
$$= \int_{0}^{\infty} \frac{C}{r^2} 4\pi r^2 dr$$
$$\to \infty$$

✓「限りなく一様に続く宇宙」の 夜空は明るい!
→つまり宇宙は有限?!
(オルパースのパラドックス)
光は途中で吸収されないことを仮定5

 r^2

2010年8月4日水曜日

✓エドウィン・ハッブルがウィル ソン山天文台で観測

- 天体までの距離と、その天体が遠
 ざかる速さ(後退速度)を測定
 - ➡明るさのわかっている星(銀河)
 - ➡光のドップラー効果(赤方偏移)
- 『遠い星ほど、より速く遠ざかっている!?』という観測結果

進行方向では振動数が高く 反対方向では振動数が低く

- ✓パトカーが通り過ぎる時、サイレンの音の高さが変化
 - 近づくときは高く、遠ざかるときは
 低く聞こえる現象
 - ➡音のドップラー効果
 - ➡発生源と観測者の相対速度

√光のドップラー効果

・光源(星) が遠ざかるとき、光の
 振動数が低下→赤い方に偏移

A RELATION BETWEEN DISTANCE AND RADIAL VELOCITY AMONG EXTRA-GALACTIC NEBULAE

By Edwin Hubble

MOUNT WILSON OBSERVATORY, CARNEGIE INSTITUTION OF WASHINGTON

Communicated January 17, 1929

Velocity-Distance Relation among Extra-Galactic Nebulae.

原著論文;http://skyserver.sdss.org/edr/jp/astro/universe/ universe.asp

√遠い星ほど、速く 遠ざかっている!?

✓例外なく、遠い星ほど、 より速く遠ざかってい る!

 $v = H_0 D$

Yasuo MIAKE, 2010/8/5

✓膨張しつつある風船の表面の2点間の距離 ●遠い2点ほど速く遠ざかる

- √ハッブル則
 - 宇宙は膨張している
 - →ハッブル則 H₀ の逆数が
 宇宙の年齢
 - 宇宙は点から始まった
 - ➡ビッグバン宇宙論
- ✓もし本当なら、宇宙初期には高温状態があったはず
 - ⇒宇宙背景放射の予言 (G. Gamowら)

 ✓ WMAP観測衛星による 宇宙背景放射の精密測定
 ● 2001年打ち上げ
 ● 宇宙進化の様子が明快に
 ■ ハッブル定数;71km/s/Mpc
 ■ 宇宙の年齢;137億年
 ■ 宇宙の大きさ;780億光年以上

元素	記号	割合(%)
水素	Н	60.3
酸素	0	25.5
炭素	С	10.5
窒素	N	2.4
リン	Р	0.1
硫黄	S	0.1
ナトリウム	Na	0.7
カルシウム	Са	0.2
カリウム	К	0.04
塩素	Cl	0.03
マグネシウム	Mg	
鉄	Fe	
亜鉛	Zn	
銅	Cu	
• • •	•••	• • •

✓ほとんどは水(H₂O)だが、それ以外にも様々な元素

- •29種類
- ・役割の不明な元素も

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H 1.00794	多量元素											希ガス		He 4.002602			
3 Li (6.941)	4 Be 9.012182				その他	」、生体	にとっ	て必要	な元素			${\mathop{\rm B}\limits_{10.811}}^{5}$	6 C 12.011	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989768	$\stackrel{12}{\mathrm{Mg}}_{24,3050}$	•			生体に	含まれ	るが、	働きが	不明な法	元素		13 Al 25.981539	14 Si 28.0855	15 P 30.973762	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 29.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.93805	26 Fe 55.845	27 Co 58.93320	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92159	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc [99]	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90543	56 Ba 137.327	57~71 💥	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.08	79 Au 196.96654	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98037	84 Po [210]	85 At [210]	86 Rn [222]
87 Fr [223]	88 Ra [226]	89~103 ₩₩	104 Unq [261]	105 Unp [262]	106 Unh [263]	107 Uns [262]	108 Uno [265]	109 Une [266]	※ラ ※※ア	ンタノ・ クチノ・	イド元素 イド元素	1					
*	57 La 138.9055	58 Ce 140.115	59 Pr 140.90765	60 Nd 144.24	61 Pm [145]	62 Sm 150.36	63 Eu 151.965	64 Gd 157.25	65 Tb 158.92534	-66 Dy 162.50	67 Ho 164.93032	68 Er 167.26	69 Tm 168.93421	70 Yb 173.04	71 Lu 174.967]	
**	89 Ac	90 Th 232,0381	.91 Pa 231.03588	92 U 238.0289	93 Np [237]	94 Pu [239]	95 Am [243]	96 Cm [247]	97 Bk [247]	98 Cf [252]	99 Es [252]	100 Fm [257]	101 Md [258]	102 No [259]	103 Lr [262]		

大阪大学谷畑先生講演ノートより

🗿 Wikipediaより

✓太陽系も多くの元素を含んでいる

• 元素の割合はどうして?

元素はどうやって作られた?

√ビッグバン直後には元素はなかった

- 宇宙の歴史と共に元素が生成されてきた
- 私たち自身の成り立ちを知ること
 - ➡原子核物理学の最前線の研究分野の一つ 「宇宙元素合成」

√3つの元素合成の舞台

- 1) ビッグバン直後3分頃
- •2) 恒星内部の核融合
- •3) 超新星爆発

➡まず、「原子核物理学」の基礎

- 原子の中心に存在し、原子の質量の殆どを占める
- 多くの核子(陽子や中性子)の集まった原子核ほど大きい
- 原子核の安定性;核子数と、陽子数と中性子数のバランスが重要

√核子(陽子や中性子)1個あたりの結合エネルギー

- 隣り合った核子間で強い引力が働く→一定の値~ 8 MeV
- 陽子と陽子の間には電気的な斥力が働く

鉄あたりが最も安定な原子核 → (核融合と核分裂)

陽子数 (Z) 中性子の吸収 $12\mathbf{C}$ 6 炭素 陽子の吸収 $10\mathbf{B}$ ^{11}B ホウ素 5 重陽子の吸収 欠 Be ベリリウム 4 欠 欠 6Li 7Li リチウム 3 欠 ヘリウム ³He⁴He 2 H 水素 中性子 n 中性子数(N) 3 5 2 6 4

大阪大学谷畑先生講演ノートより

Yasuo MIAKE, 2010/8/5

2010年8月4日水曜日

√陽子と中性子から出発

- 中性子と陽子が結合して
 原子核になる
 - →衝突毎に成長していく が、核子数5と8の安定 核は存在しない
- 中性子は10分で崩壊
- 宇宙膨張で密度・温度が
 下降し、20分程度で
 元素合成は止まった

➡水素(~80%)

- ➡ヘリウム(~20%)
- ➡リチウム(極少量)

1987A

- √核融合材料を使い尽 くした星の最期
- √短時間に爆発的な元 素合成が起こった?
- √未知の原子核領域を 通過する反応

研究

➡加速器を用いて

✓理化学研究所の加速器 研究施設

- ✓未知の原子核を加速器 で製造
- ✓元素合成、特に超新星 に伴う爆発的元素合成 の仕組み

理化学研究所HPより

元素は宇宙の進化とともに作られてきた

加速器を用いた 初期宇宙の研究

Little Bang

原子 原子核 陽子/中性子

- ✓陽子や中性子などが存在する より前の高温・高密度状態に おける物質の存在の仕方 →クォーク・グルーオン プラズマ状態
 - 物質の存在の仕方として全く
 未知
 - 宇宙初期の物質状態

/陽子や中性子

- ハドロン(陽子、中性子や中間子)は、1fm程 度の大きさを持ちクォークと媒介粒子グルオン から構成されている。
- 3つのクォークかクォーク・反クォーク対
- 量子色力学(QCD)の世界
 - ➡クォークの閉じ込め

➡ 漸近的自由度

- バッグ模型によるハドロンの構造の理解
- /大きさを持つハドロンを狭い空間に多
 重発生させると(高温・高密度状態)、
 が起こる?
 - クォーク・グルオンが比較的大きな体積中を自 由に飛び回る状態が実現する。

クォーク・グルオンプラズマ状態

√相対論的高エネルギーまで加速された原子核と原子核を正面衝突させる。

- 核子 (m~1GeV/c²) あたり100~1000GeVまで加速
- 持ち込まれた運動エネルギーの一部が原子核程度の空間に解放される

⇒→ >GeV/fm³の生成!

Relativistic Heavy Ion Collider (RHIC)

- ✓全周約3.8km
- √計864個の電磁石
- ✓実験室中央で右回りと左回り のビームが衝突
- ✓2000年から実験→液体状のQGPの生成に成功

QGP生成の実験的証拠

	RHIC	LHC
√ snn (GeV)	200	5500
T/T _c	1.9	3.0-4.2
ε (Ge V/fm ³)	5	15-60
τ _{QGP} (fm/c)	2-4	>10

√衝突エネルギーが20倍に!

- より高温に、より高エネルギー
 密度に、そして大きなクォー
 - ク・グルーオンプラズマ状態が

生成されるはず

• 流体の性質が変化するかも?

✓2010年11月に鉛・鉛衝突 実験を開始

✓基礎科学研究を国際協力で進める
 ✓日常的な国際協力
 ✓教育の国際化
 ✓大学院生の活躍
 ●鍛える教育

Yasuo MIAKE, 2010/8/5

- √ビッグバン宇宙論
 - 膨張する宇宙と、その証拠
 - ➡ハッブル則、宇宙背景放射、 初期元素合成

√宇宙元素合成

- 私たちの体は宇宙そのもの
- 宇宙の進化と共に元素が作られた
- √加速器を用いた初期宇宙再現
 - LHCによる新しい時代の幕開け
 - 国際協力と大学院生の重要性

➡科学の営みは楽しい。楽しさを伝える努力を!

➡常識に囚われず「真実」を見極める能力を!

Yasuo MIAKE, 2010/8/5

2010年8月4日水曜日

.....

宇宙の温度

✓物質の密度;~g/cm³
 ✓原子核密度;~10¹²倍~100万トン/cm³
 ✓原子核内の核子の平均距離は意外と近い

ビッグバンとリトルバン

ホッー	トな研究領域
-----	--------

		Machine	Beam+Target	Ecm [GeV]
	1987 -	米国・BNL・AGS	Si+Au	5A
	1987 -	欧州・CERN・SPS	S + Pb	20A
	1992 -	米国 BNL・AGS	Au + Au	4A
	1994 -	欧州・CERN・SPS	Pb + Pb	17A
	2000 -	米国 ・ BNL ・ RHIC	Au + Au	130A - 200A
	2009 -	欧州・CERN・LHC	p+p	9000
Yasuo M	2012 - AKE, 2010/8/5	欧州・CERN・LHC	Pb+Pb	6300A

