Understanding of Radial and Elliptic expansion with Quark number scaling and Blast wave model in 200GeV Au+Au at RHIC-PHENIX

> Yoshimasa Ikeda for the PHENIX collaboration (Riken)

Azimuthal anisotropy

Spatial anisotropy in noncentral collision provides azimuthal anisotropy of Particle emission.

The large anisotropy is an evidence of the formation of a hot and dense partonic matter.

$$\frac{dN}{d\Phi} \propto 1 + 2v_2 \cos 2(\Phi - \Psi)$$

$$\Psi : \text{ reaction plane angle} _2$$

Motivation of v₂ measurement

Large v_2 was observed in RHIC.

The values agreed with hydro-dynamical models.

It suggests rapid thermalization and quark flow.

The v_2 values are different for each particle.

Motivation of measurement of PID hadron v₂

- Comparison with rare particle.
 - Deuteron that is formed by p-n (or 6 quarks) should have higher v₂ than proton.
 - Φ meson have small cross section for hadron scattering. The mass is similar to proton or Λ rather than π or K.

The slope unerence by mass can be used to BW model calcuration.

Motivation of RP detector

- Measurement of more precise v_2 is expected.
- Poor reaction plane resolution was a major limiting factor of PHENIX v_2 measurement of rare probes such as d, Φ .

Reaction plane resolution of <cos2/ψ> ~0.75
 for minimum bias Au+Au collisions

Reaction Plane Detector

The reaction plane detector was installed just before Run7 (2007).

Reaction Plane Resolution

the reaction plane resolution was improved by a factor of two.

> The observed v₂ strength is only less than 40% of its real value.

PID for π , K and proton

TOF.W was installed before Run7, too

PID for deuteron

PID for Λ and Φ

v₂ on PHENIX-Run7

Comparison with last one

• p_{τ} range is extended to $p_{\tau} \sim 4.5$ GeV/c.

Nucleon number scaling

 $v_2^d \sim 2 v_2^p$, $p_T^d \sim 2 p_T^p$

- The peak of d v_2 is expected at p_T =6GeV/c.
- D v_2 and p v_2 are very similar on p_T/A scaling.
- It means p v_2 and n v_2 are very similar.
- Coalescence of p-n or 6
 quarks?

Nucleon number scaling

 $v_2^d \sim 2 v_2^p$, $p_T^d \sim 2 p_T^p$

- The peak of d v_2 is expected at p_T =6GeV/c.
- D v_2 and p v_2 are very similar on p_T/A scaling.
- It means p v_2 and n v_2 are very similar.
- Coalescence of p-n or 6
 quarks?

$v_2^{}$ as $p_T^{}$ for 6 particles

- D v₂ is higher than p v₂ at p_T > 3 GeV/c
- Λv_2 similar to p v_2
- Φv_2 similar to meson (π or K) rather than baryon (p or Λ) at mid p_T range (p_T = 2 – 5 GeV/c).

KE_{T} scaling

- The p_{T} shift depend on mass is rejected on KE_{T}
 - They are consistent between mesons or baryons.
 - The values are determined by centrality, KE_τ and quark number.
- Meson line and baryon line approach at high KE_T.

Quark number and KE_{T} scaling

• Consistent for all particles on KE_{T} and quark number scaling at KE_{T}/n_{a} <0.8GeV.

- They deviate at high KE_T/n_q
- This indicate a change of particle and v₂ production mechanism.

0.8

Function of Blast wave for spectra

Function of Blast wave for elliptic flow

 $v_2 = \int dx \, W \, BesselK1(\beta) \, BesselI(2,\alpha) \cos(2\phi_B)$

Temperature of BW for spectra and elliptic flow

Expanded Glauber Monte Carlo

Expanded for X-axis

The eccentricity of density distribution is adjusted to fit both of the temperature.

Final Eccentricity by BW fit

Eccentricity final

Eccentricity initial

ε_{final} < ε_{initial}

- The eccentricity estimated by BW fit with spectra and v₂ agree that of HBT analysis.
- They agree system expansion from initial state before freeze out.

$$\epsilon = \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle}$$

Summary1

- The new reaction plane detector worked well.
 - We can see rare particles by the good resolution.
- v_2 is depend on n_q .
 - Consistent for all particles on $KE_{_{T}}$ and $n_{_{q}}$ scaling at $KE_{_{T}}/n_{_{q}}{<}0.8GeV.$
 - Φv_2 is similar to other mesons on KE_{T} .
- v_2 have no depend on the quark number at high p_{τ} range.
 - Production mechanism is different.
- D v₂ is higher than p at $p_T > 3 \text{ GeV/c}$

• d v₂ and p v₂ are consistent on parton number scaling or $p_T^d \sim 2 p_T^p$ KE_T/n_q scaling

 $v_2^d \sim 2 v_2^p$

Summary2

- T of spectra of 6 particles BW fit by glauber seems flat to centrality.
- T of v₂ of BW fit with initial glauber system is not flat to centrality and it is higher than that of spectra, especially at peripheral.
- The same T of bwfit of v2 and spectra can be described by expanded glauber distribution
 - The eccentricity of final state of system is consistent with that of HBT analysis.

Next step

- Low energy scan of quark number scaling (200, 63, 39 GeV on Run10)
 - Threshold of collision energy for QGP?
- D meson v₂ by VTX on Run11
 - Charm production is faster than other quarks?

AN678

AN416

BW fit for spectra

Graph

Graph

Expansion for X-axis on Glauber Monte Carlo

Centrality 0-10% 10-20% 20-40% 40-60% 60-93%

Comparison of bw fit of v2 and spectra

- : 6 particles spectra
- : 5 particles spectra
- : 6 particles v2
- : 5 particles v2

Estimated Eccentricity

