Global event properties in Pb+Pb collisions at HC energies from ALICE

Tatsuya Chujo for the ALICE collaboration (Univ. of Tsukuba)

ISMD2011, Miyajima, Japan, Sep. 26, 2011

First Pb+Pb collisions at LHC

✓ Nov. 8, 2010
 ✓ √s_{NN} = 2.76 TeV (14 x RHIC)
 ✓ Observed by 3 experiments
 ✓ ALICE, ATLAS, CMS

ALICE physics publications (as of Sep. 26, 2011)

	arxiv date	system	energy (TeV)	observable	published in ALIC	
1	28/11/09	рр	0.9	charged particle dN/dη	EPJC 65(2010)111	
2	18/04/10	рр	0.9, 2.36	charged particle dN/d η , mult. distr.	EPJC 68(2010)89	
3	20/04/10	рр	7	charged particle dN/d η , mult. distr.	EPJC 68(2010)345	
4	28/06/10	рр	0.9, 7	antiproton/proton ratio	PRL 105(2010)072002	
5	03/07/10	рр	0.9	pion HBT	PRD 82(2010)052001	
6	05/07/10	рр	0.9	charged particle p_T spectra PLB 693(2010)53		
7	17/11/10	PbPb	2.76	charged particle dN/dη	PRL 105(2010)252301	
8	17/11/10	PbPb	2.76	charged particle v ₂	PRL 105(2010)252302	
9	05/12/10	PbPb	2.76	charged particle R _{AA}	PLB 696(2011)30	
10	08/12/10	PbPb	2.76	centrality dependence of N _{ch}	PRL 106(2011)032301	
11	15/12/10	рр	0.9	K ⁰ , ϕ , Λ , cascade	EPJC 71(2011)1594	
12	17/12/10	PbPb	2.76	pion HBT	PLB 696(2011)328	
13	19/01/11	рр	0.9, 7	pion HBT	arXiv:1101.3665v1	
14	21/01/11	рр	0.9	pion, kaon, proton	EPJC 71(2011)1655	
15	02/05/11	рр	7	J/Ψ arXiv:1105.0380v1		
16	19/05/11	PbPb	2.76	charged particle v_3 , v_4 , v_5	arXiv:1105.3865v1	
17	12/09/11	PbPb	2.76	angular correlations	arXiv:1109.2501v1	

Q: How different and/or similar these global properties at LHC energy compared to those at RHIC?

Data samples, statistics

System	Energy (TeV)	Trigger	Analyzed events	∫Ldt
рр	7	MB MUON	300M 130M	5 nb ⁻¹ 16 nb ⁻¹
рр	2.76	MB MUON	65M ~9M	1.1 nb ⁻¹ 20 nb ⁻¹
PbPb	2.76	MB	17M	1.7 mb ⁻¹

Triggers

- ⇔MB: based on VZERO (A and C) and SPD
- Centrality selection in PbPb
 - Amplitudes in the V0 scintillators
 - ⇔ Reproduced by Glauber model fit

Centrality and resolution

Correlation SPD - VZERO

N_{ch}, E_T give us an insight on initial energy density

Charged particle multiplicity; $dN_{ch}/d\eta$

- $dN_{ch}/d\eta = 1584 \pm 76$
- (dN_{ch}/dη)/(N_{part}/2) = 8.3 ± 0.4
 ≈ 2.1 x central AuAu at √s_{NN}=0.2 TeV
 ≈ 1.9 x pp (NSD) at √s=2.36 TeV
- Stronger rise with \sqrt{s} in AA w.r.t. pp
- Stronger rise with √s in AA w.r.t. log extrapolation from lower energies

Very similar centrality dependence at LHC & RHIC

After scaling RHIC results (x2.1) to the multiplicity of central collisions at the LHC

Energy density from E_T

To characterize the global properties on expanding source; introduce common "symmetric" velocity field, "radial flow".

Hadron PID in ALICE

p (GeV/c)

100 🔤 🧧 e

10⁻¹

π

0.2 0.3

p (GeV/c)

Identified hadron spectra

- Combined analysis with ITS, TPC and TOF
- Lines = blast-wave fits
 ⇒Integrated Yields
 ⇒Average p_T
 - ⇒Parameters of the system at the kinetic freeze-out (T_{f0}, β_T)

- Very strong radial flow, $\beta \approx 0.66$ (10% higher than RHIC)
- Even larger than predicted by most recent hydro

Baryon to meson ratio: Λ/K_s^0

- Baryons more abundant at intermediate p_T
- Baryon/meson ratio increases with centrality
 - Consistent with recombination and/or strong radial flow.

- Enhancement stronger than at RHIC
- Maximum of Λ/K slightly pushed towards higher p_T than at RHIC

higher radial flow?

 Particle ratios; access to the chemical properties of matter

Multi-strange baryons

ALI-PREL-11225

π^{-}/π^{+} , K⁻/K⁺, pbar/p ratios

ALI-PREL-8993

Comparison with thermal model

 All yields, except protons, follow thermal model prediction for grand-canonical ensemble and T_{ch}=164 MeV, μ_B = 1 MeV.
 ⇒ Measured proton/pion ratio below thermal model expectation
 ⇒ Strange particles perfectly agree with thermal model expectation

Center of Mass Beam Energy √s_{NN} (GeV)

Braz. J. Phys. vol.37 no.2c São Paulo June 2007 http://dx.doi.org/10.1590/S0103-97332007000500024 N. Xu

21

Extraction of source size "R" using quantum interferometry, HBT. How much volume and life time?

Particle emitting source

HBT correlations

side

ALICE: PLB696 (2011) 328

10

12

 $\langle dN_{ch}/d\eta$

8

out Spatial extent of the particle emitting source extracted from interferometry of identical bosons Two-particle momentum correlations in 3 orthogonal directions \rightarrow HBT radii (R_{long}, R_{side}, R_{out}) p_2 Volume: x2 compared to RHIC Lifetime from R_{long}: 40% higher than that at RHIC $R_{\rm long}^2(k_T) = \frac{\tau_f^2 T}{m_T} \frac{K_2(m_T/T)}{K_1(m_T/T)},$ long $m_{\pi} = \sqrt{k_{\pi}^2}$ Phys. Lett. B 696 (2011) 328 Phys. Lett. B 696 (2011) 328 400 τ_{f} (fm/c) $R_{out}R_{side}R_{long}$ (fm³) E895 2.7, 3.3, 3.8, 4.3 GeV E895 2.7, 3.3, 3.8, 4.3 GeV 350 NA49 8.7, 12.5, 17.3 GeV NA49 8.7, 12.5, 17.3 GeV CERES 17.3 GeV CERES 17.3 GeV 300 STAR 62.4, 200 GeV STAR 62.4, 200 GeV PHOBOS 62.4, 200 GeV PHOBOS 62.4, 200 GeV п 250 ALICE 2760 GeV 8 ALICE 2760 GeV ₅⊈[₽]* 200 6 150

2000

 $\langle dN_{_{ch}}/d\eta \rangle$

ALICE: PLB696 (2011) 328

1500

1000

2

C

2

4

6

100

50

°ò

500

23

System size vs. multiplicity

- HBT radii scale linearly with <N>^{1/3} in pp and PbPb, but with different slopes.
- HBT radii in PbPb vs. trend from lower energy AA:
 - R_{long}: perfectly agree
 - $-R_{side}$: reasonably agree
 - R_{out}: clearly below the trend

HBT vs. Hydro

 Behaviour of all 3 radii in qualitative agreement with hydro expectations

R_{out}/R_{side}: some model cannot describe the data.

ALICE: PLB696 (2011) 328

Anisotropic flow; sensitive to the early time of collisions, pressure gradients, and EOS.

Elliptic flow; v₂

 V_2 VS. $\sqrt{S_{NN}}$

PRL 105 (2010) 252302

At LHC, p_T integrated v₂ increases by 30% compared to RHIC data at √s_{NN}=200 GeV.

p_T dependence of v₂ RHIC vs. LHC

- v₂ vs. p_T does not change within uncertainties between $\sqrt{s_{NN}}$ =200 GeV and 2.76 TeV
 - 30% increase of p_T integrated flow explained by higher mean p_T due to stronger radial flow at higher energies

Identified particle v₂

- Stronger radial flow → more pronounced mass dependence of v₂
 - \rightleftharpoons Hydrodynamics predictions describe well the measured v_2(p_T) for π and K.

⇒ Disagreement for anti-protons in the more central bin

- ✓ Larger radial flow than in the Hydro model
- ✓ Rescatterings in the hadronic phase play an important role (arXiv:1108.5323)

Higher order harmonics; v_n

Quark number scaling for v₂ and v₃

ALI-PREL-2473

- v₂ scaling with number of constituent quarks.
 - Holds for π and K.
 - Again, anti-protons do not follow the scaling.
 - Breakup more pronounced for more central collisions

Fourier decomposition in di-hadron corr.

- 5 components describe completely the correlations at large $\Delta\eta$ and low p_T

⇒ Strong near-side ridge + double-peaked structure on away side

arXiv:1109.2501

Summary

 First data in Pb+Pb collisions at 2.76 TeV by ALICE provides an important baseline on global properties.

- Smooth transition from RHIC to LHC.
 - Hotter, Larger, Longer, less μ_B , similar v_2 ...
- Many global observables are affected by the strong radial flow at LHC energies.
- Enter the new era to study hot and dense matter at LHC energy, i.e. era of precision measurements by many hard probes.

For example... Bulk particle production with jets

Lost energy is used for the low p_T bulk particle production at large angle (by CMS). Q: reheating the matter? Need to explore bulk properties with jets (No. of jets, jet axis) Also jet quenching in high multiplicity events in p+p.

 I would like to thank Francesco Prino (ALICE) for his nice set of slides at SQM 2011.