Azimuthal HBT measurements of charged pions and kaons in Au+Au 200GeV collisions at RHIC-PHENIX

Takafumi Niida from Univ. of Tsukuba for the PHENIX Collaborations

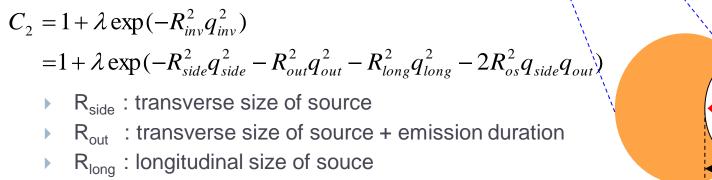
JPS Fall 2011 @ Hirosaki University

Outline

- Introduction
- Physics Motivation
- Analysis flow
- Results
- Summary

Introduction

What is HBT ?


- Quantum interference between identical two particles
- Powerful tool to explore space-time evolution in HI collisions

Riong

- Correlation function c₂ is defined as :
 - $P(p_1)$: Probability of detecting a particle $P(p_1,p_2)$: Probability of detecting pair particles

$$C_{2} = \frac{P(\vec{p}_{1}, \vec{p}_{2})}{P(\vec{p}_{1}) \cdot P(\vec{p}_{2})}$$
$$= 1 + \left| \widetilde{\rho}(q) \right|^{2} = 1 + \exp(-R_{inv}^{2}q_{inv}^{2})$$
(If assuming gaussian source)

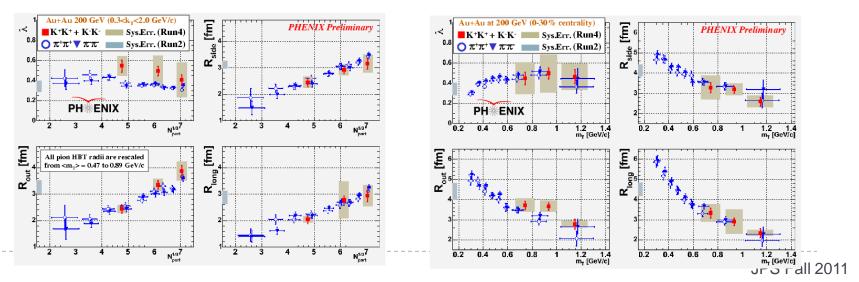
Bertsch-Pratt parameterization at LCMS frame

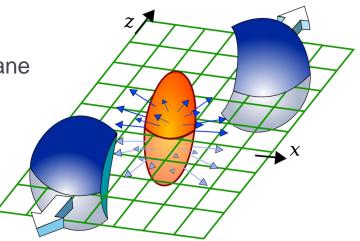
R_{os} : cross term between side and out

 $\vec{q} = \vec{p}_1 - \vec{p}_2$ $\vec{k}_T = \frac{\vec{p}_1 + \vec{p}_2}{2}$ $\vec{q}_{side} \perp \vec{k}_T, \quad \vec{q}_{out} // \vec{k}_T$

 p_1

 p_2


 $\mathsf{R}_{\mathsf{side}}$


letecto

detecto

Physics Motivation

- Azimuthal HBT analysis
 - Measures the source shape w.r.t Reaction Plane
 - Source shape at freeze-out is
 - Sensitive to "system lifetime"
 - Related to momentum anistropy
- HBT Results for charged pion and kaon
 - Centrality and m_⊤ dependence were measured for pion and kaon →no significant difference between both species
 - How about azimuthal dependence?

▶ Measure the experimantal C₂

Correct Event Plane resolution

- Finite resolution reduce the oscillation amplitude of HBT radii
- U.Heinz et al, PRC66, 044903 (2002)
- ► Fitting C₂
 - Sinyukov fitting method (includes coulomb correction and effect of long lived decay)

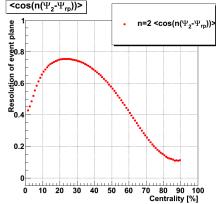
▶ Get HBT radii(R_{side}, R_{out}, R_{long},...) as a fitting result

▶ Measure the experimantal C₂

$$C_2 = \frac{R(q)}{M(q)}$$

R(q): relative momentum dist. of Real pairs M(q): that of mixed pairs

- Correct Event Plane resolution
 - Finite resolution reduce the oscillation amplitude of HBT radii
 - U.Heinz et al, PRC66, 044903 (2002)
- ► Fitting C₂
 - Sinyukov fitting method (includes coulomb correction and effect of long lived decay)


▶ Get HBT radii(R_{side}, R_{out}, R_{long},...) as a fitting result

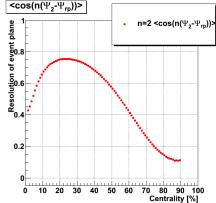
Measure the experimantal C₂

$$C_2 = \frac{R(q)}{M(q)}$$

R(q): relative momentum dist. of Real pairs M(q): that of mixed pairs

- Correct Event Plane resolution
 - Finite resolution reduce the oscillation amplitude of HBT radii
 - U.Heinz et al, PRC66, 044903 (2002)

- Fitting C₂
 - Sinyukov fitting method (includes coulomb correction and effect of long lived decay)


▶ Get HBT radii(R_{side}, R_{out}, R_{long},...) as a fitting result

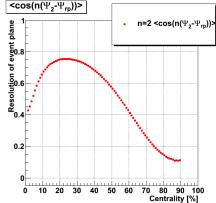
Measure the experimantal C₂

$$C_2 = \frac{R(q)}{M(q)}$$

R(q): relative momentum dist. of Real pairs M(q): that of mixed pairs

- Correct Event Plane resolution
 - Finite resolution reduce the oscillation amplitude of HBT radii
 - U.Heinz et al, PRC66, 044903 (2002)

▶ Fitting C₂


 Sinyukov fitting method (includes coulomb correction and effect of long lived decay)
C₂ = C₂^{core} + C₂^{halo} =[λ(1+G)F]+[1-λ]
G = exp(-R²_{side}q²_{side} - R²_{out}q²_{out} - R²_{long}q²_{long} - 2R²_{os}q_{side}q_{out})
Get HBT radii(R_{side}, R_{out}, R_{long},...) as a fitting result

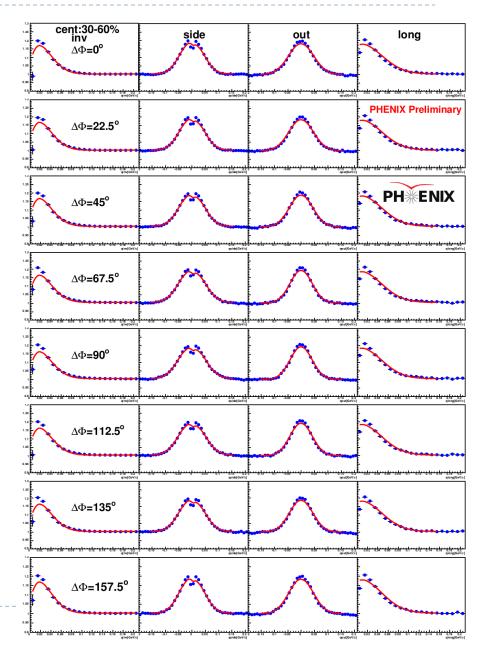
Measure the experimantal C₂

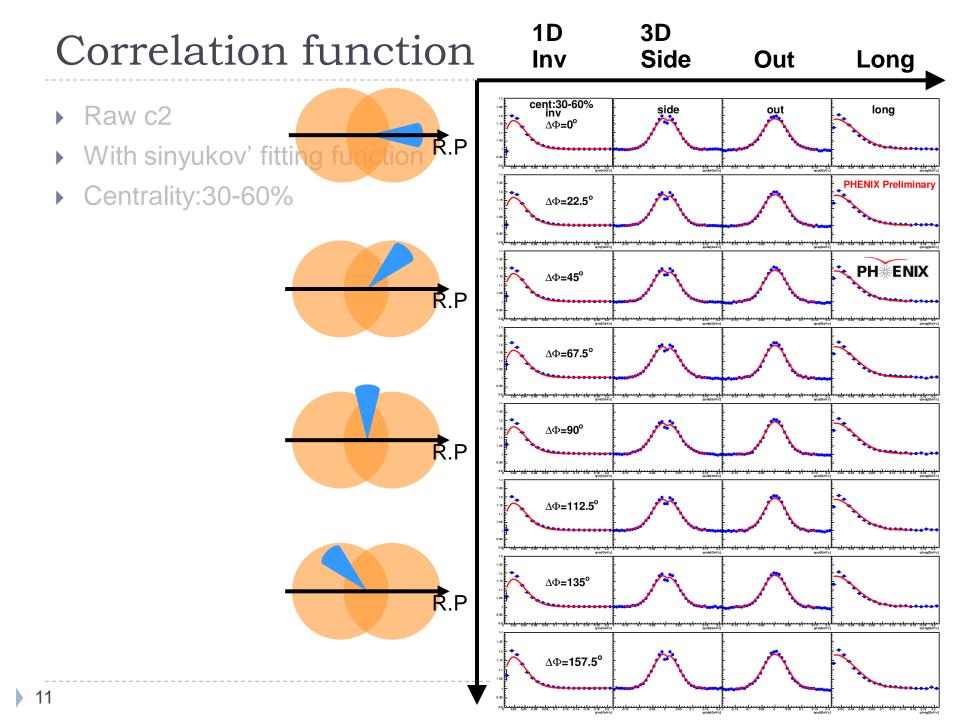
$$C_2 = \frac{R(q)}{M(q)}$$

R(q): relative momentum dist. of Real pairs M(q): that of mixed pairs

- Correct Event Plane resolution
 - Finite resolution reduce the oscillation amplitude of HBT radii
 - U.Heinz et al, PRC66, 044903 (2002)

▶ Fitting C₂

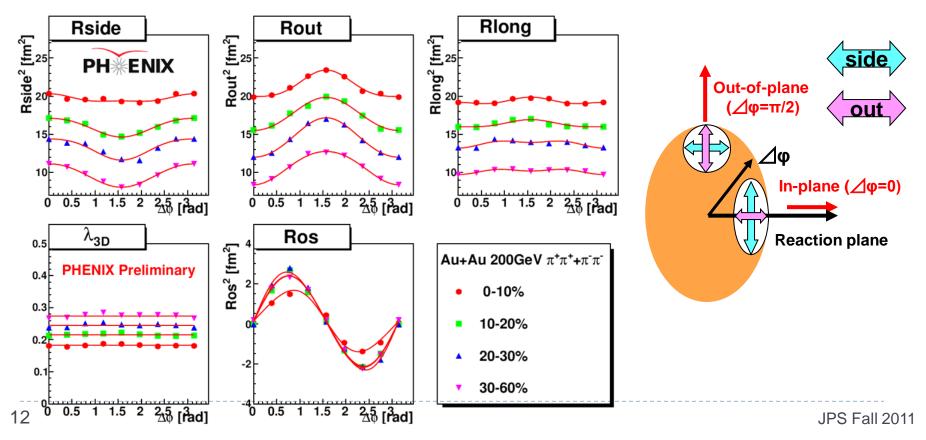

Sinyukov fitting method (includes coulomb correction and effect of long lived decay) $C_{2} = C_{2}^{core} + C_{2}^{halo}$ $= [\lambda(1+G)F] + [1-\lambda]$ $G = \exp(-R_{side}^{2}q_{side}^{2} - R_{out}^{2}q_{out}^{2} - R_{long}^{2}q_{long}^{2} - 2R_{os}^{2}q_{side}q_{out})$ Get HBT radii(R_{side}, R_{out}, R_{long},...) as a fitting result


JPS Fall 2011

South Britadin (TSide, Yout, Yong, ...)

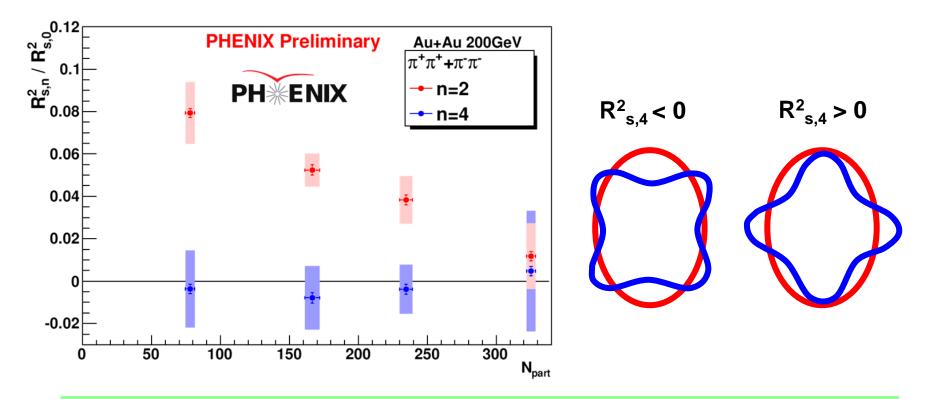
Correlation function for pion

- Raw c2
- With sinyukov' fitting function
- Centrality:30-60%

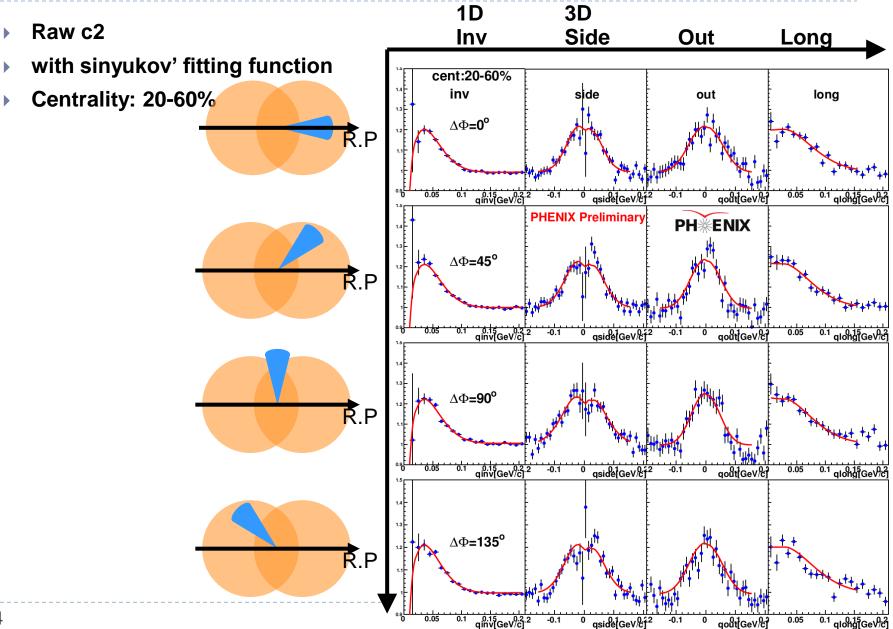


Azimuthal dependence of HBT radii for pion

- Observed the oscillation for R_{side}, R_{out}, R_{os}
- Different emission duration between in-plane and out-of-plane at 0-10%?
- Data points are fitted by cosine series function


$$R = R_{\mu,0}^{2} + 2R_{\mu,2}^{2}\cos(2\Delta\phi) + 2R_{\mu,4}^{2}\cos(4\Delta\phi) \qquad \mu = s, o, h$$
$$R = R_{\mu,0}^{2} + 2R_{\mu,2}^{2}\sin(2\Delta\phi) + 2R_{\mu,4}^{2}\sin(4\Delta\phi) \qquad \mu = os$$

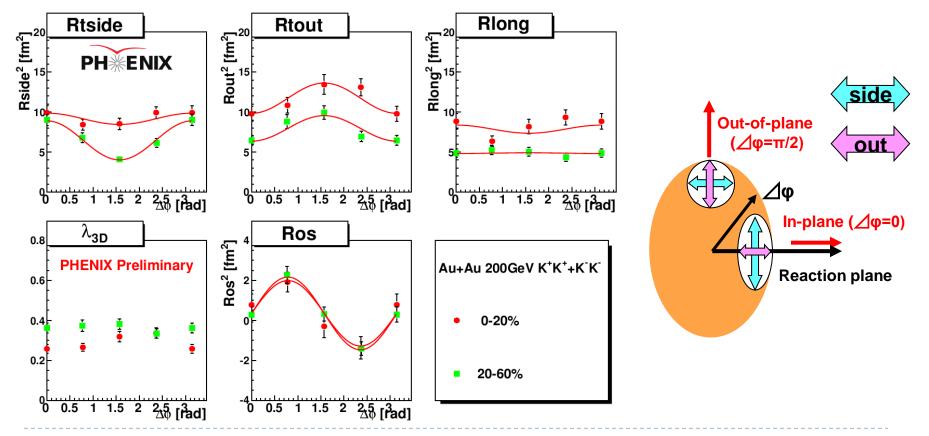
Fourier components of azimuthal HBT radii


Fourier component for R_{side} is caluculated by the following fit

$$R = R_{side,0}^2 + 2R_{side,2}^2 \cos(2\Delta\phi) + 2R_{side,4}^2 \cos(4\Delta\phi)$$

4th order Fourier component seems to have negative value, But it's zero within systematic error

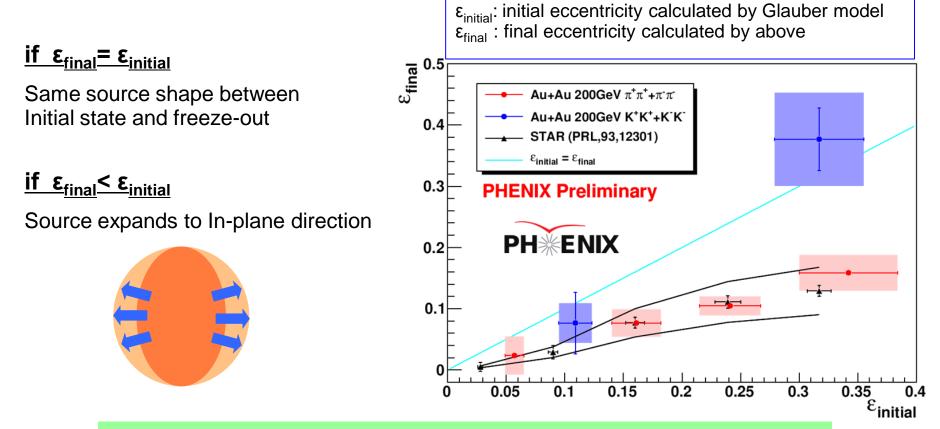
Correlation function for kaon



Azimuthal dependence of HBT radii for kaon

- Observed the oscillation for R_{side}, R_{out}, R_{os} as well as pion
- Data points are fitted by cosine series function

$$R = R_{\mu,0}^{2} + 2R_{\mu,2}^{2}\cos(2\Delta\phi) \qquad \mu = s, o, l$$


$$R = R_{\mu,0}^2 + 2R_{\mu,2}^2 \sin(2\Delta\phi)$$
 $\mu = os$

Eccentricity at freeze-out

• Final eccentricity is difined as

$$\varepsilon_{final} = 2 \frac{R_{s,2}^2}{R_{s,0}^2}$$
 by Blast-wave model

PHENIX result is consitent with STAR result for pion
ε_{final} of kaon is larger than that of pion and close to ε_{initial}
Due to different average m_T? or different cross section?

Summary & Next to do

- Measurements of azimuthal dependence of HBT radii for pion and kaon in Au+Au 200GeV collisions
 - Observed the oscillation of R_{side} and R_{out} for kaon as well as for pion
 - ▶ 4th order in oscillation of R_{side} for pion is zero within systematic error
 - Final eccentricity of pion is consitent with STAR result
 - Final eccentricity of kaon is larger than that of pion
- Next to do
 - ▶ Need to check m_T dependence of final eccentricity
 - Possible to understand the difference of pion and kaon?
 - Comparison with model (ex.blast wave model)
 - Azimuthal HBT w.r.t higher order event plane
 - Analysis using 3rd order event plane is in progress
 - Privides information about relation between v₃ and source shape?

'si?

Back up

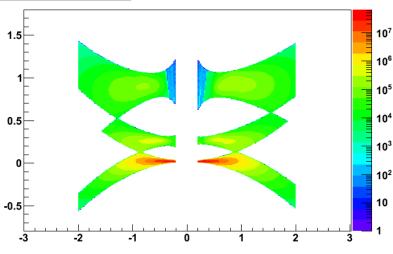
Data selection

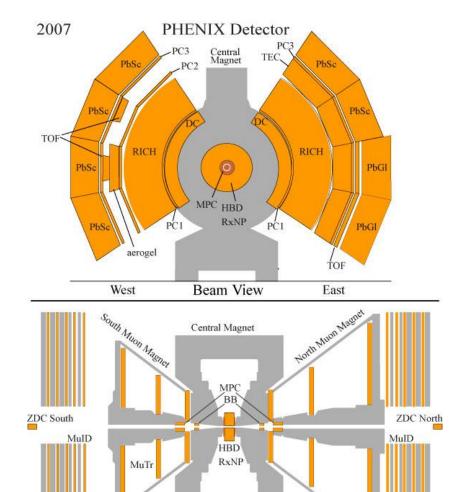
Data

Run7 Au+Au 200GeV

Track Cut

- quality: 63 or 31
- pion : pt > 0.2[GeV/c] && mom<2.0[GeV/c]</p>
- kaon : pt > 0.3[GeV/c] && mom<2.0[GeV/c]</p>
- temc < 50[nsec]</p>
- 3σ matching cut @ PC3
- > 3σ matching cut @ EMC
- ecent > 0.1[GeV]
- EMC-west(all sectors)


PID


- pion: Pi<2σ && K>2σ && P>2σ
- kaon: Pi>2σ && K<2σ && P>2σ
- Event mixing
 - Zvertex: 30[bins]
 - Centrality: 20[bins] (10[bins] for kaon)
 - Reaction plane by RxP: 30[bins] (20[bins] for kaon)

PHENIX Detector

- Vertex, Centrality
 - BBC, ZDC
- Event plane
 - Reaction Plane Detector(RxNP)
- Tracking
 - Drift Chamber, Pad Chamber
- PID by EMCal
 - Used all sectors in west arm

H_Mass2vsMOMemc2

Side View

South

North