Systematic study of elliptic and higher order harmonics by event plane method in Pb-Pb 2.76 TeV collisions at LHC-ALICE

Workshop on Particle Correlations and Femtoscopy September 24th, 2011

Masato Sano for the ALICE collaboration

University of Tsukuba

JSPS

Introduction

- What's collective flow
- Motivation
- ALICE detector
- v_n measurement by Event Plane method
- Event Plane resolution

Results

- Centrality of v₂, v₃, v₄
- p_T dependence of v₂,v₃,v₄

What's collective flow

Motivation

How does collective flow manifest itself at LHC?

- Constraints on η/s and initial condition (CGC/ Glauber).
- Does quark number and KE_T scaling work at LHC ?
- Are ridge and mach cone like structure fully explained by higher order flow ?

ALICE detector

- TPC & ITS
 - Charged particle tracking
 - VZERO
 - Scintillation counter.
 - Event trigger
 - Centrality determination
 - E.P. determination
 - FMD
 - Silicon strip detector.
 - E.P. determination

ALICE detector

- In this analysis, v_n at mid-rapidity is measured using Event Planes at forward rapidity.
 - This introduce large rapidity gap to reduce non-flow bias on v_n measurement.

TPC & ITS

- 0<Φ<2π
- |η_{track}|<0.8
- VZERO
 - $0 < \Phi < 2\pi$: Divided into 8 segments
 - V0_A : 2.8 < η < 5.1</p>
 - V0_C : -3.7 < η <-1.7
- 0.9<|η_{track}-η_{VZERO}|<5.9
 FMD
- $0 < \Phi < 2\pi$: Divided into 20 segments
- FMD_A: 1.7 < η < 5.0</p>
- FMD_C : -3.4 < η <-1.7</p>
- 0.9<|η_{track}-η_{FMD}|<5.8

v_n measurement by E.P. method

E.P. resolutions for n-th order plane

$$\langle \cos\left(n(\Psi_n^i - \Psi_n^{True})\right) \rangle = \sqrt{\frac{\langle \cos\left(n(\Psi_n^i - \Psi_n^j)\right) \rangle \langle \cos\left(n(\Psi_n^i - \Psi_n^k)\right) \rangle}{\langle \cos\left(n(\Psi_n^j - \Psi_n^k)\right) \rangle}}$$

Final These excellent resolutions allow us to measure v_2 , v_3 and v_4 .

centrality dependence of v_n

Results on v_n{EP} (this analysis) and v_n{2,|Δη|>1} (PRL, obtained from 2-part.corr. using TPC tracks) are fully consistent.

v₃ and v₄ have a weak centrality dependence compared to v₂.

$\mathbf{p}_{\mathbf{T}}$ dependence of $\mathbf{v}_{\mathbf{n}}$

- Results on v_n{EP}(this analysis) and v_n{2,|Δη|<1}(PRL, obtained from 2part.corr. using TPC tracks) are fully consistent.
- $v_3(v_4)$ is as large as v_2 at about 1.6 GeV/c (3.0 GeV/c) for 0-5% central
 - necessity to consider higher order flow for the study of di-hadron correlation especially for central collisions.

Summary & Outlook

- v_n (n=2,3,4) are measured using E.P. determined by forward detectors in Pb-Pb collisions at sqrt(s_{NN})=2.76 TeV with ALICE detector.
 - Results on v_n {E.P.} and v_n {2, $|\Delta \eta| > 1$ }) are fully consistent.
 - Centrality dependence of v_2 , v_3 and v_4 .
 - v_3 and v_4 have a weak centrality dependence compared to v_2
 - \blacksquare p_{T} dependence of $v_{2},\,v_{3}$ and v_{4} .
 - $v_3(v_4)$ is as large as v_2 at about 1.6 GeV/c (3.0 GeV/c) for 0-5% central
 - Comparison with hydro. predictions (Glauber initial condition)
 - η/s=0.08 favored with respect to ideal hydro.