
ラドン検出器を用いた放射線教育 一教材開発と指導方法一

筑波大教育A,筑波技術大B,筑波大数理C,筑波大自然D

中島朋A,稲葉基B,江角晋一C,田中直斗D, 中條達也C,新井田貴文C,三明康郎C

放射線教育の重要性

医療分野

- 一陽子線治療
- 一重粒子線治療

など

農業分野

- 一食品照射
- 一害虫の絶滅

その他

- 一年代測定
- ーラドン温泉

など

工業分野

- 一非破壊検査
- 一厚さ計

など

放射線と我々の生活は密接な関係がある

t 東日本大震災における原発問題。

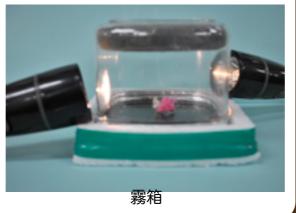
理由の一国民主体の放射線を終り起れる方が施力を高いなかった。

放射線教育の重要性がより問われている...

高等学校の新学習指導要領

物理

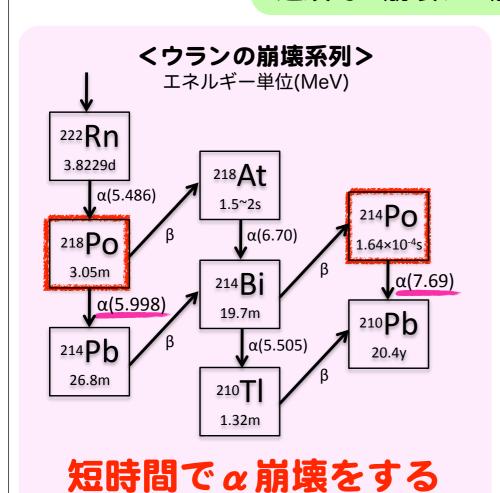
(4) 原子


イ 原子と原子核

原子核の構成、原子核の崩壊及び核反応について理解すること。

学習指導要領解説

原子核の構成、原子核の崩壊、半減期、核分裂…中略…触れる。例えば、放射線計測、霧箱を用いた放射線の観察などを行うことが考えられる。



ラドンとは

²²²Rnは無色無臭の放射性希ガス 連鎖的に崩壊する崩壊系列に属する

○ラドンは広く**自然界**に存在

○呼吸により体内に入ることで、

内部被ばくを起こす

自然放射線被ばく 2.4mSv/y

内訳 ラドン 1.3mSv/y

宇宙線 0.38mSv/y

○地下室などのラドンガス濃度が 高まることがある

身近にある代表的な放射性物質

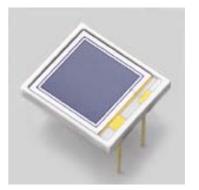
目的

教材開発

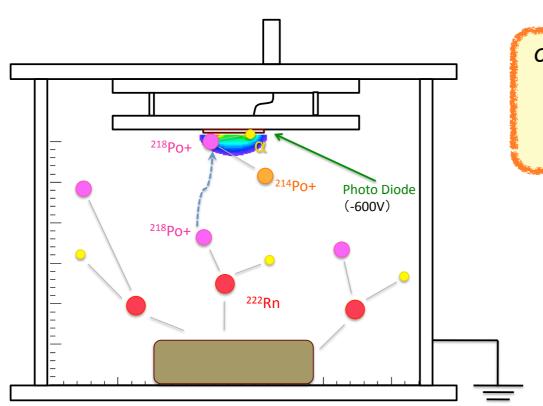
放射線源ではなく自然界に存在する放射性物質ラドンを用いて、安全に教育現場で使用でき、安価で小型なラドン検出器を開発し、容易に扱える解析ソフトの開発を行う。

実践

ラドンの崩壊や半減期を調べることを通じて、放射性物質に関する高度な理解を促進し、情報を正しく読み取り理解し、判断する姿勢を身につけさせるための学習指導案を作成し、実践する。


<mark>ラドン</mark> の検出原理

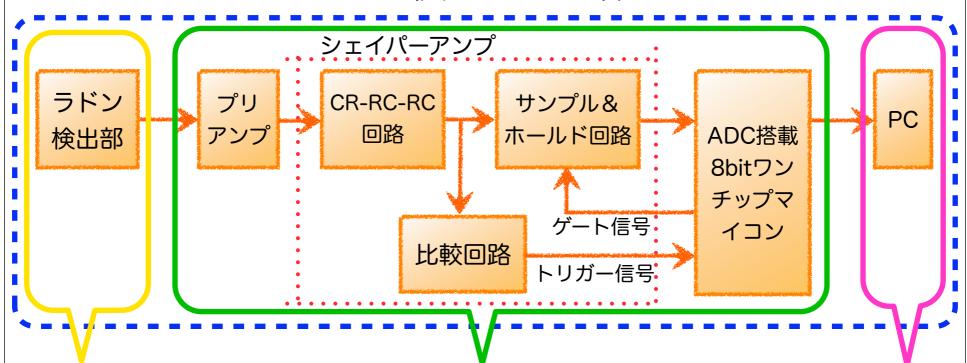
α線の検出に


PIN型Photo Diodeを使用

i - - >

受光面:10mm×10mm

【S3590-09 HAMAMATSU製】


α線の空気中の飛程が数cmである ので、効率良く収集するために

静電捕集法*を採用

静電場を用いて娘核である ²¹⁸Poと²¹⁴Poの陽イオンを Photo Diode上に集める

^{*}Nucl. Instrum. Methods Phys. Res., A 421, 1-2 (1999) 334-341

ラドン検出器の全体図

ラドン検出部

波高分析部

データ収集部

- ●Arduino©を用いて制御
- Processingでデータ保存

⇒どちらもオープンソース

検出器本体の開発状況

ラドン検出部

両手から**片手**で持ち運びへ

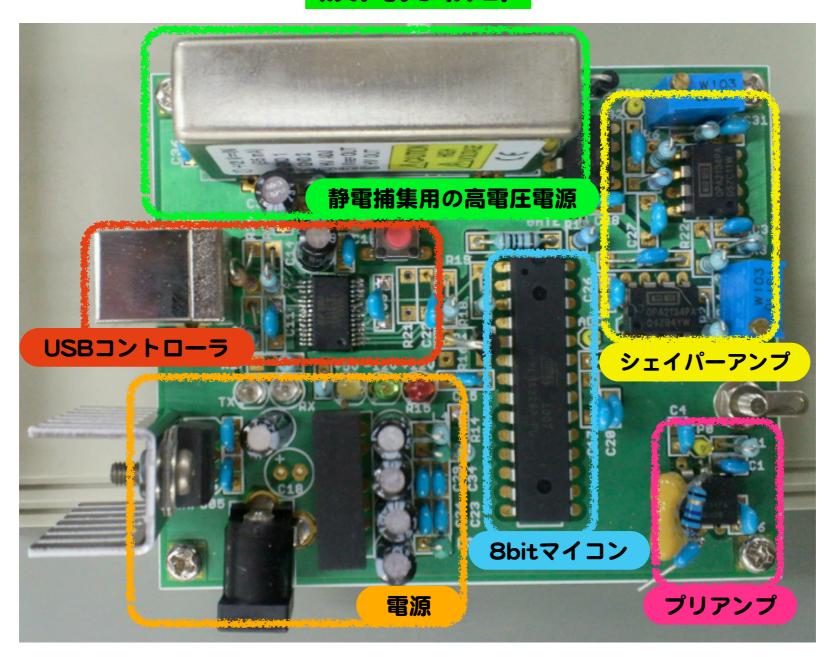
小型化、軽量化、低価格化にむけて開発中

波高分析部

開発前

160万円

開発後

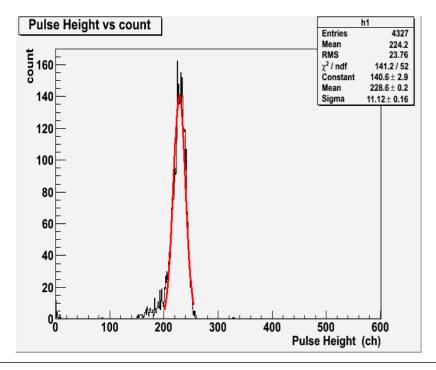

7万6千円

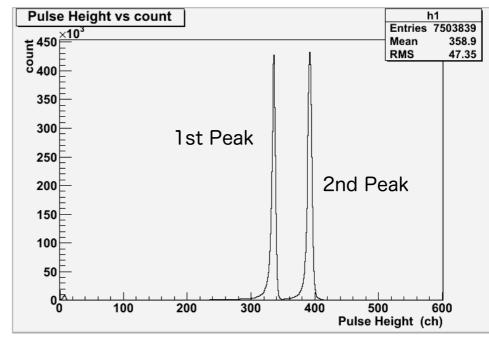
オリジナルの基板

手のひらサイズ

波高分析部

放射線源(²⁴¹Am)とラドンガスの測定

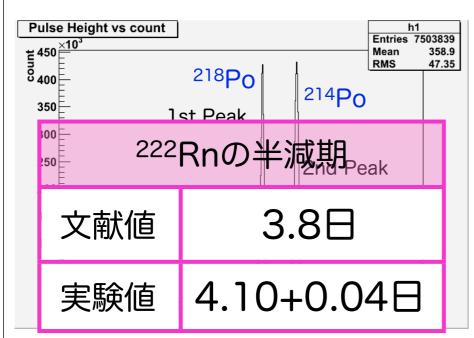

実験条件 (241Am)

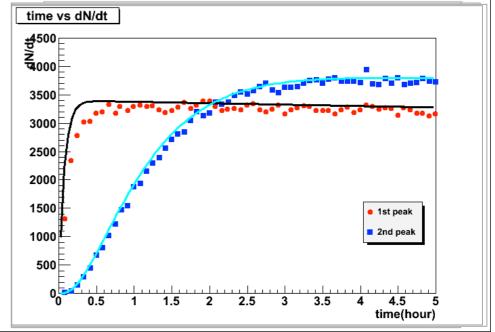

- ○²⁴¹Am線源(4.4MeV)を使用
- ◯真空で測定
- ○測定時間は5分

実験条件(ラドンガス)

- ○天然ウランを含む鉱石から収集した ラドンガスを使用
- ○大気圧で測定
- ○測定時間は119時間

エネルギー分解能 4.9%


放射性物質の核種の同定方法


- ①長時間測定したデータに対して
- 241Amによる**エネルギー較正**
- ②放射性崩壊の式と比較し
- 半減期を推定
 - →放射性物質の核種の同定

$$\begin{cases} -dN_1 = \lambda N_1 dt & (1) \\ \frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2 & (2) \end{cases}$$

²²²Rnの崩壊数の時間変化は式(3)のようにかける

²¹⁸Poの崩壊数の時間変化は式(4)のようにかける

ラドン検出器の特徴

① 特定の放射性物質を計測

霧箱やGM計数管は放射線の飛跡や量しか測定できない

② 放射線の種類やエネルギー、放射性物質の半減期を測定

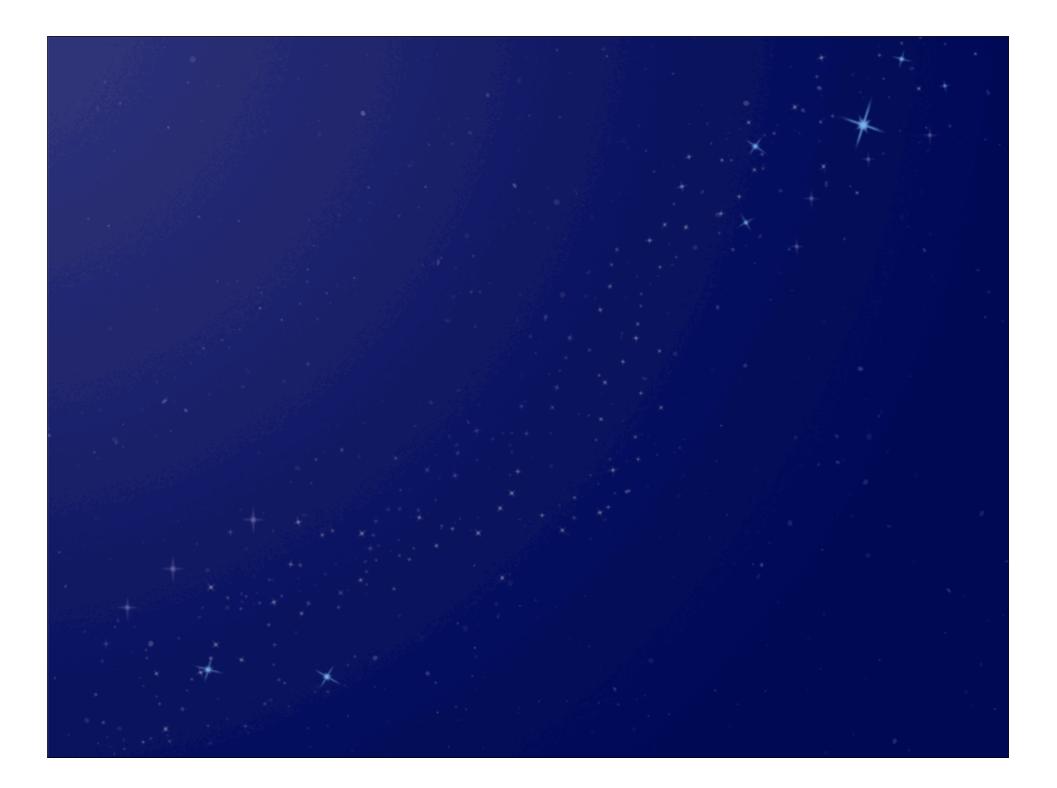
ラドン検出器はエネルギー分解能が高いため、異なるエネルギーの α 線を識別可能であり、 α 崩壊の半減期を測定出来る

③ 半減期とエネルギーより放射性物質を同定

得られた半減期とエネルギーより、α崩壊をした放射性物質の核種の同定 を行うことが可能である

- ●測定を通して放射性物質に関する高度な理解の促進
- ●情報を正しく読み取り理解し、判断する能力の育成

学習指導案


対象者	高等学校の科学部
指導計画	全】一時間
指導形式	ティームティーチング形式
目標	 放射線に関する正しい知識を理解させる。 放射線は身近にあることを感じさせる。 ものづくりに対する興味関心を高めさせる。 原子核・放射線の知識を定着させる。 科学的な思考力や表現力の育成を行う。 情報を正しく読み取り理解し、判断する姿勢を身につけさせる。
流れ	導入1:放射線というテーマで ディスカッション 導入2:教員による 講義 製作:ラドン検出器 製作 展開1: 測定 、データ 解析 展開2: 発表 まとめ: ディスカッション ※各回の最後に簡単なディスカッションを行う

これまでの実施と今後の予定

✓ KEKサマーチャレンジにて大学生対象に実施

