

Global and Collective Dynamics at PHENIX

Takafumi Niida for the PHENIX Collaboration University of Tsukuba

"Heavy lon collisions in the LHC era" in Quy Nhon

outline

- Introduction of v_n
- Higher harmonic flow (v_n) of Identified particle
- 2 particle correlations with v_n
- Azimuthal HBT w.r.t event plane
- Summary

Higher harmonic event plane

- Initial density fluctuations cause higher harmonic flow v_n
- Azimuthal distribution of emitted particles:

$$\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\phi - \Psi_2) + 2v_3 \cos 2(\phi - \Psi_3) + 2v_4 \cos 2(\phi - \Psi_3) + 2v_4 \cos 2(\phi - \Psi_4)$$
$$v_n = \left\langle \cos n \left(\phi - \Psi_n\right) \right\rangle$$

 Ψ_n : Higher harmonic event plane ϕ_{-} : Azimuthal angle of emitted particles

v_n measurement via Event plane method

Charged hadron v_n at PHENIX

PRL.107.252301

- v₂ increases with increasing centrality, but v3 doesn't
- v₃ is comparable to v₂ in 0-10%
- v₄ has similar dependence to v₂

v₃ breaks degeneracy

v₃ provides new constraint on hydro-model parameters

 \Rightarrow Glauber & $4\pi\eta/s=1$: works better

 \diamond KLN & $4\pi\eta$ /s=2 : fails

Recent Results at PHENIX

- v_n of Identified particle
- 2 particle correlations with v_n
- Azimuthal HBT w.r.t event plane

Motivation of PID v_n

v_n is sensitive probe to the QGP bulk property
Important to check the following features seen in v₂
Mass splitting at low p_T
Baryon/Meson difference at mid p_T
How is the scaling property of v_n ?

v_n of Identified particle

Mass splitting at low p_T: Hydrodynamics

Baryon/Meson difference at mid p_T

: Quark coalescence

PID v_n with modified scaling

Known n_q scaling fails in v₃, v₄

Modified scaling works well for v_n: v_n(KE_T/n_q)/n_q^{n/2}

PID v₂ at high p_T

PRC.85.064914(2012)

- Extend PID to high p_T by combining TOF(MRPC) and Aerogel Cherenkov Counter
- Quark number scaling is better for KE_T/n_q than p_T/n_q
- But it breaks at KE_T/n_q~0.7GeV for non-central collisions

Recent Results at PHENIX

■ v_n of Identified particle

2 particle correlations with v_n

Azimuthal HBT w.r.t event plane

Motivation of 2 particle correlations with v_n

Ridge and Shoulder can be seen in Δφ-Δη correlation

 \diamond They can be explained by v_n?

v_n subtractions are needed to get real jet correlations

2 particle correlations with $|\Delta\eta|$ gap

2 particle correlations without $|\Delta\eta|$ gap

Most-central : Away side yield are suppressed

Mid-central : Away side yield still remain

Recent Results at PHENIX

- Particle Identified v_n
- 2 particle correlations with vn
- Azimuthal HBT w.r.t event plane

Motivation of Azimuthal HBT w.r.t v₂ plane

Initial spatial anisotropy (eccentricity)

Final eccentricity can be measured by azimuthal HBT

It depends on Initial eccentricity, pressure gradient, expansion time, and velocity profile etc

Good probe to investigate system evolution

Azimuthal HBT radii for kaons

- Observed oscillation for R_{side}, R_{out}, R_{os}
- Final eccentricity is defined as ε_{final} = 2R_{s,2} / R_{s,0}

 $\Rightarrow R_{s,n}^2 = \left\langle R_{s,n}^2(\Delta\phi)\cos(n\Delta\phi) \right\rangle \text{ PRC70, 044907 (2004)}$

in-plane

Eccentricity at freeze-out

ε_{final}≈ε_{initial}/2 for pion

- ♦ Indicates that source expands to in-plane direction, and still elliptical
- ♦ PHENIX and STAR results are consistent

ε_{final}≈ε_{initial} for kaon

- ♦ Freeze-out time is faster than that of pion?
- \diamond Due to different m_T between π/K ?

k_T dependence of azimuthal pion HBT radii

Oscillation can be seen in R_s, R_o, and R_{os} for each kT regions

m_T dependence of ε_{final}

 ϵ_{final} of pions increases with m_T in most/mid-central collisions There is still difference between π/K even in same m_T \diamond But the difference is at most within 2 σ of systematic errors

m_T dependence of relative amplitude

Relative amplitude of R_{out} in 0-20% doesn't depend on m_T

Does it indicate emission duration between in-plane and out-ofplane is different ?

Azimuthal HBT w.r.t v₃ plane

Final triangularity could be observed by azimuthal HBT w.r.t v₃ plane(Ψ₃) if it exists at freeze-out

Detailed information on space-time evolution can be obtained

Analysis is ongoing

Summary

v_n of Identified particle

- \diamond PID v_n have been measured
- Modified scaling v_n(KE_T/n_q)/n_q^{n/2} works well for v_n
- \diamond Quak number scaling for v₂ breaks at high p_T in non-central collisions

2 particle correlations with v_n

Away side yield are suppressed in most central collisions, but still remain in non-central collisions

Azimuthal HBT w.r.t v₂ plane

- $\diamond \epsilon_{final}$ increase with m_T , while relative $R_{out,2}$ doesn't depend on m_T in central collisions
- \Rightarrow Difference of ϵ_{final} between π/K is seen even in same $m_{T,}$ but note it is within 2σ of sys. error

Back up

PID v_n vs centralarity

Same trends are seen in each centrality bins

"v₂ at high p_T" vs centrality

m_T dependence of azimuthal pion HBT radii in 0-20%

T . Niida

HIC in LHC era in Quy Nhon July, 2012

What is HBT ?

- Quantum interference between identical two particles
- Powerful tool to explore space-time evolution in HI collisions
- HBT can measure the source size and shape at freeze-out, Not whole size But homogeneity region in expanding source

3D HBT radii

- "Out-Side-Long" system
- Bertsch-Pratt parameterization

Core-halo model

- Particles in core are affected by coulomb interaction
- $C_2 = C_2^{core} + C_2^{halo}$

$$= [\lambda(1+G)F] + [1-\lambda]$$

 $G = \exp(-R_{inv}^2 q_{inv}^2)$

$$= \exp(-R_{side}^{2}q_{side}^{2} - R_{out}^{2}q_{out}^{2} - R_{long}^{2}q_{long}^{2} - 2R_{os}^{2}q_{side}q_{out})$$

The past HBT Results for charged pions and kaons

Centrality / m_T dependence have been measured for pions and kaons

No significant difference between both species

centrality dependence

 m_{T} dependence

Analysis method for HBT

Correlation function

$$C_2 = \frac{R(q)}{M(q)}$$

Ratio of real and mixed q-distribution of pairs
q: relative momentum

Correction of event plane resolution

U.Heinz et al, PRC66, 044903 (2002)

Coulomb correction and Fitting

- ♦ By Sinyukov's fit function
- \diamond Including the effect of long lived resonance decay

$$C_{2} = C_{2}^{core} + C_{2}^{halo}$$

=[$\lambda(1+G)F$] + [$1-\lambda$]
$$G = \exp(-R_{side}^{2}q_{side}^{2} - R_{out}^{2}q_{out}^{2} - R_{long}^{2}q_{long}^{2} - 2R_{os}^{2}q_{side}q_{out}$$

Azimuthal HBT radii for pions

- Observed oscillation for R_{side}, R_{out}, R_{os}
- Rout in 0-10% has oscillation

Different emission duration between in-plane and out-of-plane?

Correlation function for charged kaons

STAR Result (w.r.t psi2)

PRL.93, 012301(2004)

