STAR results from RHIC Beam Energy Scan

Hiroshi Masui / Univ. of Tsukuba, Sep/12/2013, J-PARC HI meeting

RHIC Beam Energy Scan (BES)

- Study the structure of QCD phase diagram
 - large baryon chemical potential
 low beam energy
- ➡ Beam Energy Scan !
- History & timeline
 - 2008: Test run at √s_{NN} = 9.2
 GeV (*PRC81*, 024901, 2010)
 - 2009: Proposal for BES Phase-I (arXiv:1007.2613)
 - 2010: First year of RHIC BES (7.7, 11.5, 39 and 62 GeV)
 - 2011: Two further energies (19.6 and 27 GeV)
 - 2012: Test run at 5 GeV

Goals

- At small baryon density, produced matter is characterized by
 - initial energy densities > critical values from lattice QCD
 - ~ ideal fluid flow (~ small shear viscosity to entropy density ratio)
 - opacity of jets
- 3 main goals for Beam Energy Scan at STAR
 - Search for 'turn-off' signals of Quark-Gluon Plasma (QGP)
 - or onset of the QGP
 - Search for signals of phase boundary
 - Search for QCD critical point

Observables

- Search for 'turn-off' signals of Quark-Gluon Plasma
 - Number of Constituent Quark (NCQ) scaling of v₂
 - High p⊤ suppression
 - Chiral magnetic effect
- Search for signals of phase boundary
 - Directed flow
 - Azimuthal sensitive HBT
- Search for QCD critical point
- Fluctuations

Solenoidal Tracker At RHIC

- Large & uniform acceptance at midrapidity
- Full azimuth, $|\eta| < 1$
- Excellent particle identification
- TPC + TOF

Challenges

- Event rate ~ O(1) Hz, fill length ~ O(10) minutes
 - Significant improvement towards the end of runs (thanks to RHIC)
- Huge background from beambeampipe collisions
 - e.g. total 100M events collected in ~ a month, ~95% is background at 7.7 GeV

Search for Turn-off signals of QGP

Breakdown of NCQ scaling

STAR **PRL110**, 143201 (2013) see also **PRC88**, 014902 (2013)

- Meson-baryon splitting at 62 GeV NCQ scaling of v₂
 - No difference between particles and anti-particles
- Meson-baryon splitting is gone for anti-particles at 11.5 GeV
- NCQ scaling is broken between particles and anti-particles

H. Masui, J-PARC HI meeting, Sep/12/2013 8 /24

Large v₂ difference for baryons

STAR **PRL110**, 143201 (2013) see also **PRC88**, 014902 (2013)

- Difference of v₂ between particles and anti-particles increase in lower energies
- Baryons show larger difference than mesons

Disappearance of R_{cp} **suppression**

10

(0-2%/60-80%)

R

10⁻

STAR Preliminary

p_{_}(GeV/c)

 Baryon-meson splitting reduces at low energies

H. Masui, J-PARC HI meeting, Sep/12/2013 10/24

Disappearance of charge separation

- Charge separation (γos-γss) at 200 GeV
 - chiral magnetic effect (deconfinement+chiral symmetry restoration) ?
- Separation decreases with decreasing beam energies. Disappears at $\sqrt{s_{NN}} = 11.5$ GeV or less

H. Masui, J-PARC HI meeting, Sep/12/2013 11/24

Search for signals of phase boundary

Directed flow - early predictions

L. P. Csernai, D. Rohrich, PLB458, 454 (1999)

H. Stocker, NPA750, 121 (2005)

- Linear rapidity dependence without QGP at low energy
 - "Bounce-off" of spectators
- v₁ slope becomes flat with 1st order phase transition
 - Early predictions show minimum around $\sqrt{s_{NN}} \sim 5 \text{ GeV}$

H. Masui, J-PARC HI meeting, Sep/12/2013 13/24

Non-monotonic behavior of v₁ slope

Evolution of initial spatial anisotropy

P. F. Kolb et al, PRC62, 054909 (2000)

Monotonic decrease of freeze-out eccentricity

- Pion freeze-out eccentricity smoothly decrease as a function of beam energy
 - Rapidity dependence also studied to try to compare with CERES

Search for signals of QCD critical point

Higher (n>2) moments (or cumulants)

- At critical point (with infinite system)
 - susceptibilities and correlation length diverge
 - both quantities cannot be directly measured
- Experimental observables
 - Moment (or cumulant) of conserved quantities: net-baryons, netcharge, net-strangeness, ...
 - Moment product (cumulant ratio) ↔ ratio of susceptibility

$$\kappa_2 = \left\langle (\delta N)^2 \right\rangle \sim \xi^2, \\ \kappa_3 = \left\langle (\delta N)^3 \right\rangle \sim \xi^{4.5}, \\ \kappa_4 = \left\langle (\delta N)^4 \right\rangle - 3 \left\langle (\delta N) \right\rangle^2 \sim \xi^7$$
$$S\sigma = \frac{\kappa_3}{\kappa_2} \sim \frac{\chi_3}{\chi_2}, \\ K\sigma^2 = \frac{\kappa_4}{\kappa_2} \sim \frac{\chi_4}{\chi_2}$$

- directly related to the susceptibility ratios (Lattice QCD)

M. A. Stephanov, PRL102, 032301 (2009)

- higher moments (cumulants) have higher sensitivity to correlation length
- Signal = Non-monotonic behavior of moment products (cumulant ratios) vs beam energy

H. Masui, J-PARC HI meeting, Sep/12/2013 18/24

Non-gaussian fluctuations

- 3rd moment = Skewness S
 - Asymmetry
- 4th moment = Kurtosis *K*
 - Peakedness
- Both moments = 0 for gaussian distribution
- Critical point induces non-gaussian fluctuations

Net-protons

Data

- efficiency uncorrected*
- Data compared to various expectations
 - Poisson
 - (Negative-)Binomial*
- Random sampling between p and pbar*
- UrQMD shows a monotonic energy dependence
- Need precision measurements at low energies

* under investigation (not shown here)

H. Masui, J-PARC HI meeting, Sep/12/2013 20/24

Net-charge

• Data

- efficiency uncorrected*
- Data compared to various expectations
 - Poisson
 - (Negative-)Binomial*
- Need precision measurements at low energies

* under investigation (not shown here)

Summary on BES-I

• Turn-off QGP signals

- Breakdown of NCQ scaling (particles vs anti-particles)
- ► Disappearance of high p_T suppression
- Disappearance of charge separation
- Signals of phase transition
 - Non-monotonic behavior of net-proton v₁ slope
 - Monotonic decrease of freeze-out eccentricity
- Signals of QCD critical point
 - Ongoing study on several aspects (efficiency, baseline, ...)
 - Need precision measurements at low beam energies
- BES phase-II will focus on beam energies below ~ 20 GeV

H. Masui, J-PARC HI meeting, Sep/12/2013 22/24

BES phase-ll proposal

- BES phase-II (2017-) will cover the energy below ~ 20 GeV with improved statistics
- Fill the gap between 11.5 and 19.6 GeV ($\Delta\mu_B$ ~100 MeV)
- Electron cooling + longer bunches will give 3-10 times higher luminosity
- Fixed targ star oposal down to √s_{NN} ~ 3 GeV
 - Annular gold target, 2m away from the center of the STAR
 - Data taking with collider mode at the beginning of each fill, no disturbance to normal RHIC running

H. Masui, J-PARC HI meeting, Sep/12/2013 23/24

Conclusions

- Several QGP signals turned off (v₂, R_{cp}, ...)
 - hadronic interactions become more important at low energies
- Non-monotonic behavior on v₁ slope
- Need precision measurements for higher moment analysis
- BES phase-II
 - Focus on $\sqrt{s_{NN}} < 20 \text{ GeV}$
 - Precision measurements on bulk observables
 - especially event-by-event fluctuations to search for QCD critical point

H. Masui, J-PARC HI meeting, Sep/12/2013 24/24