Study on associated low p_T hadron production with di-jet in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV in LHC-ALICE

Taiyo Kobayashi

High Energy Nuclear Physics Group at University of Tsukuba

(for the ALICE collaboration)

2013年9月20日金曜日

Low P_T particle production with di-jets

Lost energy of jets: distributed to the large angle of the away-side of the jet and it produces low momentum particles at large angle (CMS).

Advantage of ALICE: one can measure low p_T particles down to 150 MeV/c (w/ PID), together with jets.

 \rightarrow Detailed study of medium response by quenched jets.

Disadvantage of ALICE: limited statistics of high energy di-jet sample in Pb-Pb. (need to wait Run-2)

Data set

• Event Selection:

- PbPb, 2.76TeV, 13.6 M MB events, |V_z| < 10 [cm]

Track Selection:

- TPC+ITS (Hybrid track cut), $|\eta| < 0.9$

Jet Reconstruction:

- Charged jet only
- Used FASTJET package.
- Jet cone radius(R) = 0.2.
- $p_T^{min} > 0.15 \text{ GeV/c.}$

• Centrality classes:

- Used V0 detector
 - Central: 0-10 [%]
 - Semi central: 20-40 [%]
 - Peripheral: 60-90 [%]

Jet background in Pb-Pb

 \star Used event-by-event jet BG subtraction method for ρ calculations

$$\rho(\text{GeV/c}) = \text{median}(\underbrace{\frac{p_T^{jet,i}}{A^{jet}}}_{\text{(Ajet)}}) \leftarrow \text{jet cone area}$$

of TPC tracks

BG subtracted jet pT spectra

2013年9月20日金曜日

5

Leading jet, sub-leading jet

 p_T^{jet1} = leading jet p_T p_T^{jet2} = sub-leading jet p_T

The lower jet p_T selection has Many Back ground.

Hadron distribution (w.r.t. jet axis)

Summary and outlook

Studied low p_T hadron production with di-jet in Pb-Pb collisions.

Seen a effect of the background of di-jet Δφ distribution.
 The lower jet p_T selection has many background.

Low p_T hadron production with di-jets:

- I will use event cuts by (1) jet axis, (2) A_j , I think.
 - The jet $p_T > 30$ GeV sample used in the first, But these sample may contain a large fraction of back ground.

 \blacksquare So It is necessary for us to use higher jet p_T sample.

[Outlook]

Comparison with other p_T^{jet1} threshold. I have to check "fake jets" (BG) completely removed.

- Comparison with MC data, p-p data.
- Study of particle composition of "In-jet, sub-leading side".
- Need Run-2 data for better statistics.

Backup slides

2. Data set

• Event Selection:

- LHC10h (PbPb, 2.76TeV), pass2, AOD file (AOD086)
- Minimum bias Trigger (13.6 M MB events), |V_z| < 10 [cm]

• Track Selection:

- TPC+ITS (Hybrid track cut), $|\eta| < 0.9$

• Jet Reconstruction:

- Charged jet only
- Used FASTJET package.
- Anti- k_T algorithm, R = 0.2.
- p_T^{min} > 0.15 GeV/c.

• Centrality classes:

- Used V0 detector
 - Central: 0-10 [%]
 - Semi central: 20-40 [%]
 - Peripheral: 60-90 [%]

Run list (LHC10h)

139510, 139507, 139505, 139503, 139465, 139438, 139437, 139360, 139329, 139328, 139314, 139310, 139309, 139173, 139107, 139105, 139038, 139037, 139036, 139029, 139028, 138872, 138871, 138870, 138837, 138732, 138730, 138666, 138662, 138652, 138652, 138638, 138624, 138621, 138583, 138582, 138579, 138578, 138534, 138469, 138442, 138439, 138438, 138396, 138364, 138275, 138225, 138201, 138197, 138192, 138190, 137848, 137844, 137752, 137751, 137724, 137722, 137718, 137704, 137693, 137692, 137691, 137686, 137685, 137639, 137638, 137608, 137595, 137549, 137546, 137544, 137539, 137531, 137530, 137443, 137440, 137439, 137434, 137432, 137431, 137430, 137366, 137243, 137236, 137235, 137232, 137231, 137230, 137162, 137161, 137135

Hybrid Track Cut

Table 1: Overview of the hybrid track cuts.

AliESDtrackCuts function	Value	Comment
Global and complementary tracks		
SetMinNClustersTPCPtDep	$70+30/20\cdot p_{\rm T},20$	linear rise from 70 $(p_{\rm T} = 0)$
		to 100 $(p_{\rm T} = 20 {\rm GeV}/c)$,
		100 for $p_{\rm T} > 20 {\rm GeV}/c$
SetMaxChi2PerClusterTPC	4	Maximum χ^2 per TPC cluster
		in the first iteration
SetRequireTPCStandAlone	kTRUE	Enable cut on TPC clusters
		in the first iteration
SetAcceptKinkDaughters	kFALSE	Reject tracks with kink
SetRequireTPCRefit	kTRUE	Require TPC refit
SetMaxFractionSharedTPCClusters	0.4	Maximum fraction of shared
		TPC clusters
SetMaxDCATo <mark>Vertex</mark> XY	2.4	Maximum Distance of Closest
		Approach (DCA) to the main
		vertex in transverse direction
SetMaxDCATo <mark>Vertex</mark> Z	3.2	Maximum DCA in longitudinal
		direction
SetDCATo <mark>Vertex</mark> 2D	kTRUE	Cut on the quadratic sum of
		DCA in XY- and Z-direction
SetMaxChi2PerClusterITS	36	Maximum χ^2 per ITS cluster
SetMaxChi2TPCConstrainedGlobal	36	Maximum χ^2 between global
		and TPC constrained tracks
SetRequireSigmaTo <mark>Vertex</mark>	kFALSE	No sigma cut to vertex
SetEtaRange	-0.9,0.9	Pseudorapidity cut
SetPtRange	0.15, 1E+15	Minimum $p_{\rm T} > 150 {\rm MeV}/c$

2013年9月20日金曜日

TPC acceptance

Raw charged jet p_T spectra, η vs. ϕ for jets

FASTJET algorithm

FastJet: sequential clustering algorithms http://www.lpthe.jussieu.fr/~salam/fastjet/

BG jet p_T (Divide Cone Radius)

