

Neutral pion and jet measurements in Pb-Pb collisions $Vs_{NN} = 2.76$ TeV

Daisuke Watanabe for the ALICE collaboration University of Tsukuba

JPS spring Hiroshima university

Outline

- Introduction
 - Jet analysis in heavy-ion collisions
 - Physics motivation of π^0 jet correlation measurements
- Analysis procedure
 - Data set and cut conditions
 - jet reconstruction
 - π^0 reconstruction
- Results
 - π^0 jet azimuthal correlations
- Summary

Jet analysis in heavy-ion collisions

- Jet quenching
 - disappearance of away side jet $(\Delta \phi = \pi)$.
 - energy loss of hard scattered parton in QGP.
- Hadron-hadron correlation

 biased towards a surface of the matter due to strong quenching.

- Can control path length by tagging a recoil jet with triggered π^0 and changing p_T for π^0 .
- If $\pi^0 p_T$ is high, path length of recoil jets is long.
- If $\pi^0 p_T$ is low, path length of recoil jets is short.

University of Tsukuba

• Direct measurement of path length dependence of

"jet" quenching, not by hadron.

ALICE experiment

- Data taking 2009 : pp 900 GeV 2010 : pp 7TeV, Pb-Pb 2.76TeV 2011 : pp 2.76TeV 7TeV, Pb-Pb 2.76TeV 2012 : pp 7TeV 8TeV, p-Pb 5.02TeV
 - V0 detector - centrality determination
- ITS+TPC
 - charged particle reconstruction
 - jet reconstruction
- EMCAL
 - π^0 reconstruction

Data set and analysis cuts

- Data:
 - pp collisions $\sqrt{s} = 2.76 \text{ TeV} (\text{run } 11)$
 - Pb-Pb collisions $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ (run 11)
- Event selection
 - vertex Z < 10 cm
 - pp analysis
 - EMC photon trigger events (0.4M)
 - Pb-Pb analysis
 - minimum bias events (18M)
 - EMC photon trigger events (18M)
- Track selection
 - hybrid track cuts with ITS refit

Jet reconstruction

- Jet reconstruction(pp,Pb-Pb)
 - anti_ k_{T} algorithm
 - cone radius : 0.4
 - input minimum track : $p_T > 0.15$ (GeV/c)
 - jet area : A > 0.4
- Estimated BKG density(Pb-Pb)
 - k_T algorithm
 - cone radius : 0.4
 - input minimum track : $p_T > 0.15$ (GeV/c)

π^0 reconstruction

- Veto clusters generated by charged particles.
- Rejected exotic clusters and bad channels.
- BKG level decreases with increasing p_T region.

• Two clear jet peaks are observed, indicating that high $p_T \pi^0$ production is related to jet production.

π^0 – jet azimuthal correlations in Pb-Pb collisions

- Observed higher near and away side peaks on the BKG, by increasing trigger $\pi^0\,p_{T_{\cdot}}$
- BKG level decreases from central to peripheral.

University of Tsukuba 筑波大学

Jet p_T dep. Of π^0 - jet azimuthal correlations

- BKG level decreases with increasing jet p_T
 decreasing the combinatorial background
 - can select signal jets by increasing jet $\ensuremath{p_{\text{T}}}$ region

Summary

- π^0 jet correlations have been measured in pp collisions and Pb-Pb collisions at Vs_{NN}=2.76 TeV in ALICE.
- pp collisions
 - -Clear back-to-back jets with high $p_{\rm T}\,\pi^0$ are seen for pp collisions.
- Pb-Pb collisions
 - Near and away side peaks are more higher as against BKG level at high $p_{\rm T}$ region.
 - BKG level decrease with going to peripheral collisions and increase jet $\ensuremath{p_{\text{T}}}$
- Next to do
 - Will start shower shape analysis of EMCAL to get high $p_T \pi^0(30 \text{ GeV }^{\sim})$.

Back up

JPS spring Hiroshima university

Charged particle reconstruction

- Hybrid track cut : constructed by a combination two track classes
 - Global track : used SPD hits
 - Complementary track : used collision vertex instead of SPD hits

Jet Reconstruction (FASTJET)

$$d_{ij} = \min(k_{ii}^{2p}, k_{ij}^{2p}) \frac{\Delta R^2}{R^2} \begin{cases} p = 1\\ p = 0\\ p = -1 \end{cases}$$

 k_{τ} algorithm Cambridge / Aachen algorithm anti- k_{τ} algorithm

p [GeV]

15 10

- Procedure of jet finding
 - 1. Calculate particle distance : d_{ij}
 - 2. Calculate Beam distance : d_{iB}
 - 3. Find smallest distance : d_{ij} or d_{iB}
 - 4. If d_{ij} is smallest combine particles
 If d_{iB} is smallest and
 the cluster momentum
 larger than threshold
 call the cluster a jet
- Parameter
 - anti- k_{T} algorithm
 - cone radius : 0.4
 - input track $p_T > 0.15$ (GeV)
 - jet area > 0.4

University of Tsukuba 強波大学

K_{T} jet Cone jet

anti-k., R=*

Subtraction of BKG energy

- Large fluctuation at low p_T region
- Can reconstruct signal jet greater than 50 GeV

Invariant mass distribution in Pb-Pb collisions

- Consistent with pp collisions at peripherral collisions.
- This analysis used as π^0 within 3sigma from each mean points.

Event mixing

- Event mixing
 - divided centrality 0~100% and vertex z \pm 10cm evenly into 10 parts
 - used as mix event same with centrality and vertex z of real event

送着 University of Tsukuba 筑波大学

JPS spring Hiroshima university