Soft physics at RH

Hiroshi Masui, University of Tsukuba

Fall KPS meeting, Nov. 2013

√s _{NN} (GeV)	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
200												
130												
62.4												
39												
27												
22.5												
19.6												
11.5									STAR only			
7.7												
5.0											Test run	
	\u+Au		Cu+Cu		d+Au		U+U &	Cu+Au		_		

Multi-particle correlations

- Powerful tools to study the bulk properties of the system
 - Azimuthal anisotropy

$$\begin{split} &\left\langle e^{in\phi}e^{-in\psi}\right\rangle \to \left\langle v_n^2\right\rangle \\ &\left\langle e^{i\phi_1}e^{i\phi_2}e^{-i2\psi}\right\rangle \to \left\langle a_1^2\right\rangle \end{split}$$

Femtoscopy (identical bosons)

 $\langle \rho_1(x)\rho_2(x)\rangle \to 1 + e^{-R^2q^2}$

Initial geometry (+fluctuations), shear viscosity

Local parity violation, chiral magnetic effect

Source size, geometrical anisotropy at freeze-out

Conserved charge fluctuations

 $\left\langle (N-\overline{N})^2 \right\rangle \to \chi_2$

Susceptibility, QCD critical point

 I'm going to review the recent correlation measurements from RHIC

PHENIX

- Fast triggers
 - Hard probes by electrons & photons
- TOF + EMC + Aerogel
- hadrons
- Forward beam counters (BBC, MPC, RXN)
- support measurements of azimuthal anisotropy
- large pseudorapidity gap reduces 'non-flow' effects
- VTX, FVTX
 - heavy flavors

STAR

- Large acceptance Time Projection Chamber (TPC)
- PID capabilities have been (will be) significantly improved
- TOF (2009-) charged hadrons
- MTD (2013-) muons
- HFT (from 2014) heavy flavors

Flow in d+Au ?

- Large v_2 in 0-5% d+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV
- Near side correlation in 0-5% on Au-going side
- No near side peak on d-going side
- Need to understand away side jet contributions to extract vn
- Interesting to see the centrality dependence
 - (Two-particle) non-flow scales like 1/N

Geometry control

 Test the relation between initial geometry and final momentum anisotropy

- Achieve higher density in deformed collisions with the same energy
- Path length dependence
- Finite odd harmonics from geometry overlap
- Control magnetic field (test chiral magnetic effect)

Results

- v₂ slope shows clear difference between Au+Au and U+U
- super central U+U could enhance tip-tip collisions
- Large v₁ @ mid-rapidity in Cu+Au (not observed in Au+Au)
 - also for pions. Need more statistics for protons

Break down of NCQ scaling

STAR **PRL110**, 143201 (2013), **PRC88**, 014902 (2013)

- Number of Constituent Quark scaling of v₂
- Indication of deconfinement at early stage of heavy ion collisions
- Meson-baryon splitting at 62.4 GeV NCQ scaling of v₂
 - No difference between particles and anti-particles
- Meson-baryon splitting is gone at 11.5 GeV
- NCQ scaling is broken between particles and anti-particles

Femtoscopy

Triangular oscillation

- R_{out} shows clear oscillation with respect to Ψ_3
- Finite Rout, zero Rside
- could suggest triangular flow is dominated at freeze-out
 - whereas triangular source shape is very small at freeze-out
- Important to study k_T dependence of asHBT

Freeze-out eccentricity @ BES

- Spatial anisotropy is sensitive to equation of state
 - might be signal for 1st order phase transition
- Pion freeze-out eccentricity smoothly decreases as a function of beam energy
 - STAR data don't show non-monotonic energy dependence

Fluctuations

Higher (n>2) order moments

- At critical point (with infinite system)
 - susceptibilities and correlation length diverge
 - both quantities cannot be directly measured
- Experimental observables
 - Moment (or cumulant) of conserved quantities: net-baryons, netcharge, net-strangeness, ...
 - Moment product (cumulant ratio) ↔ ratio of susceptibility

$$\kappa_2 = \left\langle (\delta N)^2 \right\rangle \sim \xi^2, \\ \kappa_3 = \left\langle (\delta N)^3 \right\rangle \sim \xi^{4.5}, \\ \kappa_4 = \left\langle (\delta N)^4 \right\rangle - 3 \left\langle (\delta N) \right\rangle^2 \sim \xi^7$$
$$S\sigma = \frac{\kappa_3}{\kappa_2} \sim \frac{\chi_3}{\chi_2}, \\ K\sigma^2 = \frac{\kappa_4}{\kappa_2} \sim \frac{\chi_4}{\chi_2}$$

- directly related to the susceptibility ratios (Lattice QCD)
- *M. A. Stephanov,* - higher moments (cumulants) have higher sensitivity to correlation length *PRL***102**, 032301 (2009)
- Signal = Non-monotonic behavior of moment products (cumulant ratios) vs beam energy

Non-gaussian fluctuations

- 3rd moment = Skewness *S*
 - Asymmetry
- 4th moment = Kurtosis *K*
- Peakedness
- Both moments = 0 for gaussian distribution
- Critical point induces non-gaussian fluctuations

Net-proton fluctuations

• Data

- efficiency uncorrected*
- Data compared to various expectations
- Poisson
- (Negative-) binomial*
- No significant excess compared to Poisson & UrQMD
- Need precision measurements at low energies

* under investigation (not shown here)

Net-charge fluctuations

- No significant excess compared to Poisson, models
- STAR ≠ PHENIX → acceptance ? efficiency correction ?

Summary

- Multi-particle correlations are powerful tool to understand the underlying collision dynamics in heavy ion collisions
- Azimuthal anisotropy
 - Flow in d+Au ? Need centrality dependence
 - Possibility to enhance tip-tip collisions by using v₂
 - Hint of turn-off signal by breakdown of NCQ scaling between particles and anti-particles

Femtoscopy

- Triangular flow is dominated at freeze-out ?
- Smooth energy dependence of final freeze-out eccentricity
- Fluctuations
 - Need precision measurements for QCD critical point search

Back up

Large v2 difference for baryons

STAR **PRL110**, 143201 (2013), **PRC88**, 014902 (2013)

- Difference of v₂ between particles and anti-particles increase in low energies
- Baryons show larger difference than mesons

Disappearance of charge separation

- Charge separation (γos-γss) at 200 GeV
- chiral magnetic effect ?
- Separation decreases with decreasing beam energies, disappears at $\sqrt{s_{NN}} = 11.5$ GeV or less

22/20