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Space-Time evolution in HI collisions

arXiv:1201.4264 [nucl-ex]
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Initial state Hard Collisions Evolution Hadron Freezeout

B Space-time extent at freeze-out reflects the characteristics of
system evolution, such as the strength of the expansion, the
expansion time, hadron rescattering, and so on.

B HBT interferometry is a powerful tool to study the space-time
evolution in Heavy lon collisions.



HBT Interferometry

B 1956s, R. Hanbury Brown and R. Twiss measured the angular
diameter of Sirius.

B 1960, Goldhaber et al. correlation among identical pions in p+p

B Quantum interference between two identical particles
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Azimuthal angle dependence

B Angle dependence of HBT radii relative to Reaction Plane
reflects the source shape at kinetic freeze-out.

B Initial spatial anisotropy causes momentum anisotropy (flow anisotropy)

<-One may expect in-plane extended source at freeze-out

B Final source eccentricity will depend on initial eccentricity,
flow profile, expansion time, and viscosity etc.
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HBT radii w.r.t Reaction Plane at RHIC
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but still elliptical shape.



Higher Harmonic Flow and Event Plane

B Initial density fluctuations cause higher harmonic flow v

B Azimuthal distribution of emitted particles:
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Centrality dependence of v, and initial €

Higher harmonic flow v, Initial source anisotropy €,
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B Weak centrality dependence of v, unlike v,

B Initial g; has finite values and weaker centrality
dependence than g,

@ Triangular component in source shape exists at final state?
=Measurement of HBT radii relative to ¥,



PHENIX Experiment
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Event Plane Determination

1<|n|<2.8 24 scintillator segments
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Event Plane Resolution beam axis
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B Event plane is determined by
Reaction Plane Detector (RXNP)
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Particle IDentification

2007

EMC here!

PHENIX Detector

H EMC-PbSc is used.

< timing resolution ~ 600 ps
B Time-Of-Flight method
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p: momentum L: flight path length
t: time of flight
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Particle Identification by PbSc-EMC
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B Charged 1 within 20

<-11/K separation up to ~1 GeVic

Momentum x charge
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3D-Analysis |

beam

B “Out-Side-Long” frame

<~ Bertsch-Pratt parameterization : R
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Correction of Event Plane Resolution

B Smearing effect by finite resolution of the event plane

true size

measured size

B Correction for g-distribution A..-(¢, ;) =Auncrr(q, ®5)
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event plane resolution
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HBT radii w.r.t 3"9-order event plane

Average of radii is set to “10” or “5” for w.r.t ¥, and w.r.t W, T. Niida (QM2013)
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B R, clearly shows a finite oscillation w.r.t ¥, in most central event,
while R, does not show such a oscillation.

B What makes this R, oscillatiol 0 At depends on azimuthal angle?
Note: R, is sensitive to AT & B+

Cy =1+ dexp(—R2q? — R2q%2 — Riq} — 2R2,q,qs)
Rz :RzQ + B%ATZ

0 effect of flow anisotropy?
o difference of “width” and “thickness”? 13



R}, (fm?)

Possible explanation
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deformed flow ]
deformed geometry .
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PRC88, 044914 (2013) W HBT radii w.r.t ¥; with Gaussian model

<-C. Plumberg et al., PRC88, 044914 (2013)
<Next talk: C. Plumberqg

deformed flow

| ® with/without triangularly deformed
flow/geometry

deformed geometry

% flow

V= geometry

B “Deformed flow” shows finite R, oscillation and very small R oscillation

B Qualitatively agreement with the data seen in most-central collisions
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k; dependence of HBT radii w.r.t ¥,
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B Charged pions in Au+Au 200 GeV

<20-60% centrality
<5 Kk bins within 0.2-1.5 GeV/c
B Fitted with the following Eq.:

R’ = R: o+ 2R, 5cos[3(¢ — U3)]
Rgs — 2st,3 Sm[?)(gb - \113)]

U= s,0,l

B No clear k; dependence for R,

B Same sign of the R, oscillation in all
k; bins
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m,; dependence of 3"-order oscillation amplitudes
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B R,,?are around zero, and does not show any clear m; dependence.
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B R, ,? has finite negative values in both centrality

<In 20-60%, it seems to decrease with m;
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Comparison with the 3"4-order Gaussian model
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B Trend of R, ;2 seems to be explained by “deformed flow” in both centralities.

<-Note that model curves are scaled by 0.3 for the comparison with the data
B R, ,2seems to show a slight opposite trend to “deformed flow”.

<-Zero~negative value at low m+, and goes up to positive value at higher m;
B Contribution from spatial anisotropy seems to be small.
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Time evolution of spatial anisotropy

B MC-KLN + Hydrodynamic model

<>Parameters are not tuned.
B 15-20% centrality
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@ Inflection points represent that the nt"-order deformation of the

source turns over.

® Interesting that &, turns over earlier than &,.
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Summary

B Azimuthal angle dependence of HBT radii with respect to 3r-
order event plane have been presented.

<>Finite oscillation of R 2 and very weak oscillation of R.? seen in
most central event may be explained by the triangular flow
anisotropy rather than spatial anisotropy.

<R, 3% shows a monotonic decrease with my.
v' Similar trend to “deformed flow” model

<R, 3% does not show any clear m; dependence, but seems to have
opposite trend to “deformed flow” model.

B The result indicate that initial triangularity may be significantly
diluted.
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Thank you for your attention!

20



