Future perspectives of the ALICE experiment and detector upgrade

Hiroshi Masui for the ALICE collaboration University of Tsukuba

The 5th Asian Triangle Heavy Ion Conference 2014, Osaka, Japan, Aug. 5-8, 2014

Outline

- Current ALICE experiment
 - Upgrade during Long Shutdown 1 (*LS1*) in <u>2014;</u> *D*i-jet *CAL*orimeter (*DCAL*)
- ALICE future physics programs
 - Focus on long term physics after LS2
- ALICE detector upgrade (selected)
 - Core upgrade during LS2 in 2018-2019; Time Projection Chamber (TPC), Inner Tracking Systems (ITS)
- Summary and outlook

Current ALICE detectors

5 6 7 8 9 10

M(Kπ) (GeV/*c*²)

M(Kπ) (GeV/c²)

TOF β

Current[®] performance

TPC

arXiv:1402.4476 [nucl-ex]

- PID for wide p_T range
- Efficient low *p*_T tracking
- Excellent vertexing

4

Di-jet CALorimeter

- **DCAL** extension of EMCAL acceptance
 - |η|=0.7, Δφ=66° on opposite side of EMCAL → allows hadron-jet, dijet measurements in ALICE, with R=0.4, up to p_T ~ 150 GeV/c
 - Energy resolution ~ $10\%/\sqrt{E}$
- Enhance photon and jet trigger capability
- **DCAL** has already being installed, and will be ready in 2015

Physics with DCAL

Transverse distribution of hard scattering vertices calculated in qPythia

• π^{0} -jet correlation - maximize i et opathe south of the two in the error of the production of the product of the

ALICE future physics program

Probe	Physics	Observable	
Heavy-flavor (charm & bottom)	Thermalization, EoS Transport coefficient, energy loss	V2 & RAA	
Quarkonia (J/ψ, ψ')	Production mechanisms	yield, v ₂ , R _{AA}	
Low mass di-leptons	Initial temperature, EoS Chiral phase transition	yield, v ₂ vector meson spectral function	
Jet	Parton energy loss	PID fragmentation function, Heavy flavor in jets, γ-jet correlation	
Heavy nuclear states	Search for exotic bound states (anti-hyper nucleus, H-Dibaryon)	yield	

 Emphasis on *heavy-flavor*, *low mass di-leptons* and *heavy nuclear states* at low *p*_T

7

Strategy for long term upgrade

- Many measurements will focus on low p_T and very high background observables - trigger is not applicable
- Detector upgrade to enhance low p_T vertexing and tracking capability, and to take minimum bias data at substantially higher rates
- ► Target integrated luminosity: 10 nb⁻¹ in Pb-Pb, 6 pb⁻¹ in p-p
- Read out ~50kHz Pb-Pb interactions with minimum bias trigger
 - Complementary to ATLAS and CMS (highly selective triggers)
- Upgrade strategy
 - TPC with GEM readout + new pipelined electronics (dead-time free)
 - New ITS, better vertexing with high resolution+low material thickness
 - Readout electronics for TRD, TOF, PHOS and muon spectrometer
 - Forward trigger detectors, Muon Forward Tracker
 - High-Level Trigger (HLT), DAQ and trigger system for high rate
 - Integrated online & offline structure; DAQ/HLT/offline (O² project)

Physics reach

	Approved *		Upgrade * *		
Observable	$p_{\mathrm{T}}^{\mathrm{Amin}}$	statistical	$p_{\rm T}^{\rm Umin}$	statistical	
	(GeV/c)	<i>(c)</i> uncertainty	(GeV/c)	uncertainty	
	Heav	y Flavour			
D meson R_{AA}	1	10 % at $p_{\rm T}^{\rm Amin}$	0	0.3 % at $p_{\rm T}^{\rm Amin}$	
D meson from B decays R_{AA}	3	30 % at $p_{\rm T}^{\rm Amin}$	2	1 % at $p_{\rm T}^{\rm Amin}$	
D meson elliptic flow ($v_2 = 0.2$)	1	50 % at $p_{\rm T}^{\rm Amin}$	0	2.5 % at $p_{\rm T}^{\rm Amin}$	
D from B elliptic flow ($v_2 = 0.1$)	not accessible		2	20 % at $p_{\rm T}^{ m Umin}$	
Charm baryon-to-meson ratio	not accessible		2	15 % at $p_{\rm T}^{\rm Umin}$	
$D_s meson R_{AA}$	4	15 % at $p_{\mathrm{T}}^{\mathrm{Amin}}$	1	1 % at $p_{\mathrm{T}}^{\mathrm{Amin}}$	
	Cha	rmonia			
$J/\psi R_{AA}$ (forward rapidity)	0	1 % at 1 GeV/ <i>c</i>	0	0.3 % at 1 GeV/a	
$J/\psi R_{AA}$ (mid-rapidity)	0	5% at 1 GeV/ <i>c</i>	0	0.5 % at 1 GeV/a	
J/ ψ elliptic flow ($v_2 = 0.1$)	0	15% at 2 GeV/c	0	5% at 2 GeV/a	
$\psi(2S)$ yield	0	30 %	0	10 %	
	Die	lectrons			
Temperature (intermediate mass)	not accessible			10 %	
Elliptic flow ($v_2 = 0.1$)	not accessible			10%	
Low-mass spectral function	not accessible		0.3	20~%	
	Heavy N	uclear States			
Hyper(anti)nuclei ${}^{4}_{\Lambda}$ H yield	35 %			3.5 %	
Hyper(anti)nuclei $^{4}_{\Lambda\Lambda}$ H yield	not accessible			20%	

ALICE upgrade LOI, <u>http://cds.cern.ch/record/1475243/</u>

_uminosity for minimum bias data

* 0.1 nb⁻¹ out of 1 nb⁻¹ delivered luminosity
** 10 nb⁻¹ integrated luminosity

• ALICE will move from an observation to the *precision measurements* with detector upgrade

9

ALICE goal beyond LS1

- Run 2 (2015-2017): *Pb-Pb at ~ 5 TeV (~1-3 nb⁻¹)*, p-Pb (energy TBD), p-p at ~ 5 TeV
- Run 3-4: Pb-Pb at 5.5 TeV (~ 10 nb⁻¹ at nominal B field + ~ 3 nb⁻¹ at reduced B field), p-Pb & p-p at 5.5 TeV

TPC

ALICE TPC TDR, https://edms.cern.ch/document/398930/1

• Acceptance

- ▶ |η|<0.9, Δφ=2π</p>
 - diameter~5m, length~5m
- 72 MWPC readout chambers
- Outer: 18×2, Inner: 18×2
- 557,568 readout cathode pads
- Gas: Ne-CO2 (90-10)
 - drift field = 400 V/cm
- Maximum drift time ~ 100 μ s
- MWPC + Gating Grid Operation
 - Rate limitation < 3.5 kHz

TPC with GEM readout

- A continuous, untriggered readout of the TPC in Pb-Pb collision at 50 kHz rate
 - MWPC readout leads to massive charge accumulation in the drift volume due to back-drifting ions

• GEM readout

- Reduction of ion back-flow (IBF)
- High rate capability
- No ion tail
- Requirement for ALICE GEM TPC
 - ▶ IBF < 1% at gain = 2000
 - Cluster energy resolution <12% for ⁵⁵Fe
- Stable operation at high rate

Expected performance

• Preserve the present TPC performance with GEM upgrade

Low mass di-leptons

- Significant improvement on statistical uncertainty with TPC (and ITS) upgrade for low mass di-lepton measurement
- Dalitz decay, conversion and charm rejection by ITS, electron identification by TPC+TOF → reduce systematic uncertainty

ITS

• Present ITS - 6 cylindrical layers

- 2 layers each of SPD (Silicon Pixel Detector), SDD (Silicon Drift Detector) and SSD (double sided Silicon Strip Detector)
- Rate limitation ~1 kHz in Pb-Pb
- Poor statistical precision for charmed mesons at low p_T
- Cannot reconstruct charmed baryons in Pb-Pb collisions

Design goals of ITS upgrade

	Parameter	Present ITS	New ITS
Beam pipe	Pseudorapidity acceptance	η < 0.9	η < 1.22
	Radius of inner most layer	39 mm	~23 mm
	Si thickness	~350 µm	~50 µm
	Pixel size	50µmx425µm	O(20µmx30µm)
	Material budget per layer	~1.1% <i>X</i> 0	~0.3-0.8% <i>X</i> 0
A A A A A A A A A A A A A A A A A A A	Max. rate in Pb+Pb	~1 kHz	~100 kHz

- 7 layers of Monolithic Active Pixel Sensors
- Improve a factor of 3-5 impact parameter resolution
 - Smaller radius of inner most layer, smaller pixel size, reduced material budget
- Improve tracking efficiency and p_T resolution at low p_T
 - Increase number of layers & granularity
- Fast readout & easy maintenance

Expected performance

IB: X/X₀= 0.3%; OB: X/X₀= 1.2%

300 100_г in ro ---in z Standalone tracking efficiency 90 **Current ITS** 250 80F IB: X/X₀= 0.3%; OB: X/X₀= 0.8% (ິມາ) 200 ປ 70F IB: X/X₀= 0.3%; OB: X/X₀= 1.0% Pointing Resolution, 0 60 50 Efficiency (%) **Current ITS** IB: X/X₀= 0.3%;OB: X/X₀= 1.2% 40 IB: X/X₀= 0.3%; OB: X/X₀= 0.8% 30 IB: X/X₀= 0.3%; OB: X/X₀= 1.0% 20F 50 IB: X/X₀= 0.3%; OB: X/X₀= 1.2% 10 0.2 0.3 1 2 3 Transverse Momentum, p₋(GeV/c) 0.2 0.3 1 2 3 4 5 6 7 8 910 Transverse Momentum, p_(GeV/c) 0.05 4 5 6 7 8 9 1 0 0.05 0.1 0.1 Pointing resolution is improved by a factor of $\sim 3(-5)^{+1}$ in ro (z) Momentum Resolution, $\Delta p_{_{
m T}}^{}/p_{_{
m T}}^{}(\%)$ direction IB: X/X₀= 0.3%; OB: X/X₀= 1.0% IB: X/X₀= 0.3%; OB: X/X₀= 1.2% not affected by variations of material budget Improve efficiency, particularly in low p slightly affeoted 3 . in the range of 92-94% at 200 MeV/c in pt

ALICE ITS upgrade, http://cds.cern.ch/record/1625842/

Heavy flavor flow

- Precision D⁰ v₂ measurements up to $p_T \sim 16$ GeV/c
- Charm v_2 down to $p_T \sim 0$ GeV/c with prompt D⁰
 - Beauty v₂ can be also measured down to p_T~0 GeV/c with B-decay D⁰

of jyväskylä Curent detector upgi

Muon Forward Tracker (MFT)

ALICE MFT upgrade, http://cds.cern.ch/record/1592659

Readout & trigger system upgrade

ALICE readout & trigger system, http://cds.cern.ch/record/1603472/

~ 2500 DDL links in total

Forward trigger upgrade; Fast Interaction Trigger (*FIT*) detector

FoCal: high-granularity calorimeter at forward rapidity η~4-5*

* still in review phase, possible installation during LS3

17

H. Masui / Univ. of Tsukuba 19

Summary

- DCAL will be ready in 2015
 - Half of DCAL has been installed in ALICE, other half will be installed this year
 - Commissioning is on-going
- ALICE detector upgrades have been proposed for precision measurements on rare probes
 - Unique on heavy-flavor, low mass di-leptons in low p_T
- Inspecting 50 kHz of minimum bias Pb-Pb collisions
 - Key detector upgrades: TPC with GEM readout, ITS, DAQ
 - continuous readout for TPC and ITS & online event reconstruction
 - Significant efforts on detector R&D are on-going