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Soft QCD matter and hard probes
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Hard-scatterings produce ‘quasi-free’ partons 
⇒ Initial-state production known from pQCD 

⇒ Probe medium through energy loss

Heavy-ion collisions produce  
QCD matter 

Dominated by soft partons  
p ~ T ~ 100-300 MeV

‘Hard Probes’: sensitive to medium density, transport properties



Hard Probes of the Quark Gluon Plasma

1. Understand* interactions between hard partons and the 
Quark Gluon Plasma!

• Is LPM interference important?!
• Is interference between successive parton emissions important?!
• Is there a dead cone effect for heavy quarks?!
• Are the quark/gluon differences driven by CA/CF, as expected?!

2. Use this to learn about the properties of the Quark Gluon 
Plasma!

• General properties: nature of the interactions: scattering centers or fields 
(strong coupling), effective degrees of freedom? etc!

• Specific properties: e.g. density/temperature at RHIC vs LHC
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*As usual: there is some freedom in defining the question, e.g. we can decide that certain  
aspects are not tractable and/or uninteresting



Nuclear modification factor
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Suppression factor 2-6 
Significant pT-dependence 
Similar at RHIC and LHC?

So what does it mean?



From RHIC to LHC
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RHIC: 200 GeV 
LHC: 2.76 TeV  per nucleon pair

Energy ~14 x higher

LHC: spectrum less steep,  
larger pT reach

RHIC: n ~ 8.2 
LHC: n ~ 6.4



Back-of-the envelope considerations

Just to get a sense of the numbers:!
• Take the hadron spectra and apply ‘energy loss’!
!

!

!
• Two scenarios:!

• Constant relative energy loss ΔE/E!
• RAA constant for a power law spectrum!

• Constant energy loss ΔE!
• RAA increases with pT for a power law spectrum
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RAA depends on n, steeper spectra, smaller RAA



From RHIC to LHC
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RHIC LHC

RHIC: n ~ 8.2 LHC: n ~ 6.4

( ) 20.023.01 2.6 =− ( ) 32.023.01 4.4 =−
Qualitative lessons: 

1) Similar RAA at LHC means larger energy loss 
2) Increase of RAA with pT: relative energy loss not constant 

Expect: constant ΔE, or log increase + kinematic limits 

Back-of-the envelope considerations



Towards a more complete picture

• Energy loss not single-valued, but a distribution!
• Geometry: density profile; path length distribution!
• Energy loss is partonic, not hadronic!

– Full  modeling: medium modified shower!
– Simple ansatz for leading hadrons: energy loss followed by 

fragmentation!
– Quark/gluon differences
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Parton spectrum Fragmentation (function)Energy loss distribution

This is where the information about the medium is
P(ΔE) combines geometry  
with the intrinsic process 

– Unavoidable  for many observables

Notes: 
• This is the simplest ansatz – most calculation to date use it (except some 

MCs) 
• Jet, γ-jet measurements ‘fix’ E, removing one of the convolutions

First generation models
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Finding qhat from data at RHIC and LHC
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Burke et al, JET C
ollaboration, arXiv:1312.5003
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Systematic comparison of energy loss models with data!
Medium modeled by Hydro (2+1D, 3+1D)

pT dependence matches reasonably well



Fitting the jet quenching parameter
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CUJET: 𝛼s is medium parameter!
Lower at LHC

HT: transport coeff is parameter!
Higher at LHC

Burke et al, JET C
ollaboration, arXiv:1312.5003



Summary of transport coefficient study
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            larger at RHIC than LHC: running of 𝛼s ?!
Or: limited validity of models?

RHIC:

LHC:

Burke et al, JET C
ollaboration, arXiv:1312.5003

Expect factor 2.2 from  
multiplicity + nuclear size

(T=370 MeV)

(T=470 MeV)



Are we done with qhat?

Main open questions for RAA-type observables: !
• Large angle radiation, kT ~ k"

• Not treated in any of the ‘analytical’ calculations!
• Important for phenomenology!
• Path to solution: include NLO/recoil!

• Large x, ΔE ~ E"
• Some large x results/estimates exist; still eikonal?!
• Probably not important for medium-high pT!

• Path averaging"
• Not much work done; not simple due to interference!
• Possible solution: brute force; integrate path integral over scattering centers (Zakharov)!

• Multiple gluon emission"
• Most calculations use independent emission!
• May suffice for leading hadrons, but jet observables need a more complete treatment
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Not at all!  
There are significant conceptual problems with the baseline models

We can hope/argue that the impact of these on qualitative picture may be limited,!
but quantitative conclusions require a closer look



Medium-induced radiation
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If λ < τf, multiple scatterings  
add coherently

2ˆ~ LqE Smed αΔ

2
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Zapp, QM09

Lc = τf,max
propagating  

parton

radiated 
gluon

Landau-Pomeranchuk-Migdal effect 
Formation time important

Radiation sees  
length ~τf at once

Energy loss depends on density:
ρ

λ
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and nature of scattering centers 
(scattering cross section)

Transport coefficient



Large angle radiation
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Emitted gluon distribution 
Opacity expansion

Calculated gluon spectrum extends to large k⊥ at small k 
Outside kinematic limits

kT < k

GLV, ASW, HT cut this off ‘by hand’
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TECHQM ‘brick report’, arXiv:1106.1106



Effect of large angle radiation
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L-dependence; regions of validity?
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Emission rate vs τ (=L)
Caron-Huot, Gale, arXiv:1006.2379

AMY, small L, 
no L2, boundary effect

Full =  
numerical solution of  

Zakharov path integral  
= ‘best we know’

GLV N=1 
Too much radiation  
at large L 
(no interference  
between scatt centers)

H.O = ASW/BDMPS like (harmonic oscillator) 
Too little radiation at small L 

(ignores ‘hard tail’ of scatt potential)

E = 16 GeV 
k = 3 GeV 
T = 200 MeV

Agreement of medium density for  !
AMY, GLV/CUJET fits is a coincidence!

Multiple soft tends to give smallest E-loss, !
but may be most accurate?



Energy loss formalisms
• Large differences between formalisms understood!

– Large angle cut-off!
– Length dependence (interference effects)!

• Mostly (?) ‘technical’ issues; can be overcome!
– Use path-integral formalism!
– Monte Carlo: exact E, p conservation!

• Full 2→3 NLO matrix elements!
• Include interference

!
Plenty of room for interesting and relevant theory work!
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Current progress on: 
• Interference in multiple gluon emission: ‘antenna radiation’ 
• Some work on non-eikonal propagation 
• Monte-Carlo approaches for E, p conservation  

(JEWEL, q-PYTHIA, YaJEM, MARTINI)



Path length dependence: ‘surface bias’
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Near side trigger,  
biases to small E-loss

Away-side large L

Away-side (recoil) suppression IAA samples  
longer path-lengths than RAA

NB: other effects play a role: quark/gluon composition, spectral shape (less steep for recoil) 



Di-hadron modelling
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T. R
enk, P

R
C

, arX
iv:1106.1740

L2 (ASW) fits data 
L3 (AdS) slightly below

Modified shower  
generates increase at low zT

L (YaJEM): too little suppresion 
L2 (YaJEM-D) slightly above

Model ‘calibrated’ on single hadron RAA

Di-hadron suppression is (probably?) a more robust probe of path length  
 dependence than the more obvious observables: v2, centrality dependence



Di-hadrons and single hadrons at LHC
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Need simultaneous comparison to  
several measurements  

to constrain geometry and E-loss

Here: RAA and IAA

Three models: 
ASW: radiative energy loss 
YaJEM: medium-induced virtuality 
YaJEM-D: YaJEM with L-dependent  
                 virtuality cut-off (induces L2)

NB: would like to see a more precise  
evaluation a la RHIC results



Heavy flavour energy loss
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Latest calculations of radiative+collisional E-loss for  
heavy and light quarks agree with data

RAA similar for light hadrons and D mesons due to interplays 
of spectra shape, fragmentation with dead cone effect

M. Djordjevic2, PRL 112, 042302 
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Jets and parton energy loss

Motivation: understand parton energy loss by tracking the lost energy

Qualitatively two scenarios: 
1) In-cone radiation: RAA = 1, change of fragmentation 
2) Out-of-cone radiation: RAA < 1

As usual: reality is somewhere in-between
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Jets at LHC
ALICE

η

ϕ

Transverse energy map of 1 event

Clear peaks: jets of fragments  
from high-energy quarks and gluons

And a lot of uncorrelated ‘soft’ background



Charged and full jets

• Full jets: charged + neutral  
particles (except neutrinos)!
• Hadronic + Electromagnetic Calorimetry  

(ATLAS)!
• + tracking (particle flow; CMS)!

• Tracking + EMCal (ALICE)!
• Charged jets: only charged  

particles!
• Used by ALICE because of limited acceptance of EMCal
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Charge to neutral fluctuations!

Full jets preferred for original goal: recover jet energy!
In practice, differences are small, however….



Detector corrections

Standard practice:!
• Charged jets are corrected to charged jets at 

the particle level!
• main effect: tracking efficiency!

• Full jets are corrected to full jets at the particle  
level!
• Calorimetric jets: HCal response!
• Tracking+EMCal: Unmeasured hadrons (neutrons, K0L, tracking efficiency)
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Definitions:!
Particle level: as generated by event generator, e.g. Pythia!
Detector level: as reconstructed (Pythia+detector simulation)!
(Parton level: parton energy; ill-defined?)
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PbPb jet background

Cacciari et al

Background density vs multiplicity

η-ϕ space filled with jets 
Many ‘background jets’

Background contributes up to ~180 GeV per unit area

Statistical fluctuations remain after subtraction

Subtract background: App raw
jetT

sub
jetT ρ−= ,,

Jet finding illustration
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Pb+Pb jet RAA

Jet RAA measured by 
ATLAS, ALICE, CMS

RAA < 1: not all produced jets are seen;  
out-of-cone radiation and/or ‘absorption’

For jet energies up to ~250 GeV; energy loss is a very large effect

ATLAS+CMS: hadron+EM jets

ALICE: charged track jets

Good agreement 
between experiments

Despite different methods:



Comparing hadrons and jets
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Comparison to JEWEL energy loss MC
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JEWEL+PYTHIA

ALICE data
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Generic expectations from energy loss

• Longitudinal modification: 
– out-of-cone ⇒ energy lost, suppression of yield, di-jet energy 

imbalance 
– in-cone ⇒ softening of fragmentation 

• Transverse modification 
– out-of-cone ⇒ increase acoplanarity kT 

– in-cone ⇒ broadening of jet-profile

λ

kT~µEjet

fragmentation 
 after energy loss?

Out-of-cone effects are large, so expect combination of all of the above



Changes in fragmentation 
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Longitudinal  
fragment distributions

C
M

S
, arX

iv:1310.0878

Transverse  
fragment distributions

Enhancement at large r, low pT"
ratio ~1 at small r, large pT

No modification at small R, large pT: physics or auto-correlation?

ATLAS, arXiv:1406.2979z
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Jet broadening: R dependence of RAA
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Comparison to models: YaJEM
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T. Renk, arXiv:1212.0646

Thorsten Renk: the increase towards R = 1 at z = 1 is 
natural consequence of the jet energy selection (bias effect)
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See also: L. Apolinario, Lisbon jet workshop

https://indico.cern.ch/event/304078/session/3/contribution/19/material/slides/0.pdf
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JEWEL results for jet structure
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Radial distributionLongitudinal distribution

JEWEL: more fragments at high z 
for medium-modified shower

JEWEL: more fragment pT at!
small r for medium-modified shower

Trends opposite to q-PYTHIA!
retain relation small r ⇔ large z



Models for jet quenching

• q-PYTHIA: medium-induced branching!
• Energy-momentum conserved in shower!

• JEWEL: medium-induced branching with MC formation time!
• Includes momentum exchange with medium!
• Complication: recoil; momentum leaks out of the jet (need to define 

boundary between medium and jet for calculational reasons)!
• YaJEM: medium-induced virtuality!

• Model somewhat ad-hoc, but describes much of the observations!
• PYQUENCH: medium-induced branching; ad-hoc 

implementation
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⇒Virtuality evolution may be a key concept?



Virtuality evolution and jet mass
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Idea: jet mass is determined by virtuality of showering parton
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Other ideas
• Iancu, Blaizot et al:!

• At some soft scale om ω = αs ωc, branching probability  
becomes ~1!

• Medium-induced gluon splittings favor x~0.5 (quasi-democratic)!
• Both effects would strongly modify in-medium showers; are they 

compatible with phenomenology? What are the limits of applicability?!
• Rajagopal, Casalderrey-Solana, Milhano et al:"

• What about strong coupling?!
• Use AdS/CFT estimates and implement in PYTHIA for 

phenomenology!
• Main observational impact from !

• Tywoniuk, Mehtar-Tani, Salgado et al!
• Improve treatment of multiple gluon emissions in medium!
• No angular ordering for medium-induced radiation!
• Important interplay of scales: opening angle of jet vs Qs etc
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Conclusion

• Inclusive particle RAA follows expectations!
•              larger at RHIC than LHC!
• Modelling/calculations still need to be refined!

• Jets, main observations:!
• RAA < 1, significant out-of-cone radiation!
• Longitudinal, transverse fragment distributions modified:!

• Enhancement at small z, large r!
• Suppression at intermediate z, r!
• Very little change at small r, large z!

• First comparisons to MC models:!
• JEWEL shows too much suppression at large r, small z!
• q-PYTHIA: too much suppression at small r, large z!

• Connection to virtuality, jet mass to be explored
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Clearly, there is physics in the jet fragmentation"
No clear picture yet, but we have a handle!



Extra slides
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Jet trigger

Hadron trigger

Hadron trigger vs jet trigger

Hadron trigger: strong “surface bias”  
maximizes recoil path length

Full jet trigger: no geom. bias 
partially cancelled by bkg fluctuations

T.R
enk, PR

C
85 064908

If hadron and jet RAA are similar, why not use hadron observables?
Are jets an unnecessary complication?

Biases are different! Can be exploited to constrain models
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Summary
• Jets: a ‘new’ tool for parton energy loss measurements 

– Large out-of-cone radiation (R = 0.2-0.4) 
• Energy asymmetry 
• RAA < 1, similar to hadrons 
• IAA < 1 
• Radial shapes 

– Remaining jet has small modifications: 
• Longitudinal and transverse structure similar at small r, large z 
• Deviations at large r, low z 

– Most of the radiation is at low pT 
• Scale set by medium temperature? 
• Democratic branchings?

Does this constrain the energy loss mechanism(s)?"
Ongoing work…

Interplays of many effects: impossible to read simple conclusions off the 
plots"

Need (detailed) calculations to draw conclusions
e.g. JEWEL and YaJEM energy loss MCs agree  

with many of the observed effects"
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PbPb jet background

Toy Model

Main challenge: large fluctuations of uncorrelated background energy

Size of fluctuations depends on pT cut, cone radius
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Background jets
Raw jet spectrum

Event-by-event background subtracted

Low pT: ‘combinatorial jets’ 
- Can be suppressed by requiring 

leading track 
- However: no strict distinction 

at low pT possible

Next step: Correct for background 
fluctuations and detector effects 
by unfolding/deconvolution
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Removing the combinatorial jets

Correct spectrum and remove combinatorial jets by unfolding

Results agree with biased jets: reliably recovers all jets and removed bkg

Raw jet spectrum Fully corrected jet spectrum

ALIC
E arXiv:1311.0633
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PbPb jet spectra
Charged jets, R=0.3

Jet spectrum in Pb+Pb: charged particle jets 
Two cone radii, 4 centralities

RCP, charged jets, R=0.3

Jet reconstruction does not  
‘recover’ much of the radiated energy

ALIC
E arXiv:1311.0633



Comparing to energy loss models
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R=0.2

R=0.3 (×10−1)

R=0.4 (×10−2)

R=0.5 (×10−3)

ATLAS data

JEWEL+PYTHIA

40 60 80 100 120 140 160 180 200

10−3

10−2

10−1

1

p⊥ [GeV]

R
C
P K

. Zapp et al, arXiv:1212.1599

JEWEL gets the right suppression for R=0.2,!
but not the increase with R!

(Treatment of recoil partons?)

JEWEL: RCP vs R
Jet observables: need explicit modelling of multi-particle final states

Mehtar-Tani, Tywoniuk, arXiv:1401.8293

Fragment distributions sensitive  
to coherence effects  

(NB: no geometry model yet)



Again: background fluctuations
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Toy model spectrum

At fixed pT: pick up  
above-average background contributions"
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Background fluctuations  
migrate yield to higher pT"

Fragment distributions (simulation)

ξ ≳ 4 ⇔ pT ≲ 2 GeV 

Current measurements mostly pT > 2 GeV



Situation at RHIC, ca 2008

50

B
ass et al, PR

C
79, 024901ASW: 

HT: 
AMY:

/fmGeV2010ˆ 2−=q
/fmGeV5.43.2ˆ 2−=q

/fmGeV4ˆ 2≈q

Large density: 
AMY: T ~ 400 MeV 
Transverse kick: qL ~ 10-20 GeV

Large uncertainty in  
absolute medium density

PH
EN

IX, arXiv:1208.2254

3 main calculations; comparison  
with same medium density profile

One aspect: scattering potential/momentum transfer;  
see recent work by Majumder, Laine, Rothkopf on lattice



Modelling azimuthal dependence
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A. Majumder, PRC75, 021901

RAA

pT (GeV) pT (GeV)

RAA

RAA vs reaction plane sensitive to geometry model



RAA vs ϕ and elastic eloss
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T. R
enk, PR

C
76, 064905, J. A

uvinen et al, PR
C

82, 051901

Elastic E-loss gives 
small v2

Data require L2 or  
stronger path length  

dependence

However, also quite sensitive to medium density evolution

In Plane

Out of Plane



Path length dependence: RAA vs ϕ
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PHENIX, arXiv:1208.2254

In Plane

Out of Plane

Suppression depends on angle, path length
Not so easy to model: calculations give different results



Reaction plane dependence at LHC: High-pT v2
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Model: B. Betz, M. Gyulassy, arXiv:1201.0281	
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Reasonable agreement between calculation  
and data for pT > 10 GeV!
(NB: simplified geometry, E-loss; 
 paper claims scale-dependence of 𝛼s main effect)



p
T assoc > 3 G

eV
p

T assoc > 6 G
eV

d+Au Au+Au 20-40% Au+Au 0-5%

Suppression of away-side yield in Au+Au collisions: energy loss

High-pT hadron production in Au+Au dominated by (di-)jet fragmentation

Di-hadrons at high-pT: recoil suppression
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Dihadron yield suppression
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Away-side: Suppressed by factor 4-5  
⇒ large energy loss

Near side Away side

STAR PRL 95, 152301

8 < pT,trig < 15 GeV

Yield of additional 
particles in the jet

Yield in balancing  
jet,  after energy loss

Near side: No modification  
⇒ Fragmentation outside medium?

Near side 
associated

trigger

Away side associated

trigger



Four formalisms

• Hard Thermal Loops (AMY) 
– Dynamical (HTL) medium!
– Single gluon spectrum: BDMPS-Z like path integral!
– No vacuum radiation!

• Multiple soft scattering (BDMPS-Z, ASW-MS) 
– Static scattering centers!
– Gaussian approximation for momentum kicks!
– Full LPM interference and vacuum radiation!

• Opacity expansion ((D)GLV, ASW-SH) 
– Static scattering centers, Yukawa potential !
– Expansion in opacity L/λ  

(N=1, interference between two centers default)!
– Interference with vacuum radiation!

• Higher Twist (Guo, Wang, Majumder) 
– Medium characterised by higher twist matrix elements!
– Radiation kernel similar to GLV!
– Vacuum radiation in DGLAP evolution

57

Multiple gluon emission

Fokker-Planck  
rate equations

Poisson ansatz 
(independent emission)

DGLAP 
evolution

See also: arXiv:1106.1106

All formalisms can be related to the same BDMPS-Z path 
integral formalism; different approximations used



The Brick Problem
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Gluon(s)

Compare outgoing gluon, quark distributions
- Same density 
- Same suppression

Compare energy-loss in a well-defined model system: 
Fixed length L = 2, 5 fm 
Density T, q 
Quark, E = 10, 20 GeV

TECHQM: Theory-Experiment Collaboration on Hot Quark Matter

and interpret/understand the differences

Two types of comparison:

arXiv:1106.1106
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Multiple soft scattering: BDMPS, AMY
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Using            based on AMY-HTL scattering potential

L=2 fm Single gluon spectra L=5 fm Single gluon spectra

AMY: no large angle cut-off

)(ˆ Tq

+ sizeable difference at intermediate ω at L=2 fm
Large x treatment in AMY more accurate



Single gluon spectra
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Same temperature

@Same temperature:  AMY > OE > ASW-MS

L = 2 fm L = 5 fm

Size of difference depends on L, but hierarchy stays



Multiple gluon emission — Poisson ansatz
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Poisson convolution example

ω
ω
d

d
dINgluon ∫=

gluonNn

gluon eN
n

nP −
=
!
1)(

Average number of gluons:

Poisson fluctuations:

Total probability:

(assumed)

Main other approach: build into DGLAP (used for HT)



Outgoing quark spectra
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Same temperature: T = 300 MeV

@Same T: suppression AMY > OE > ASW-MS
Note importance of P0



Nuclear modification factor RAA
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p+p

A+A

pT

1/
N

bi
n d

2 N
/d

2 p
T

‘Energy loss’

Shift spectrum to left

‘Absorption’

Downward shift

Measured RAA is a ratio of yields at a given pT 
The physical mechanism is energy loss; shift of yield to lower pT

The full range of physical pictures can be  
captured with an energy loss distribution P(ΔE)



Geometry
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Density profile

Profile at τ ~ τform known

Density along parton path

Longitudinal expansion  
dilutes medium 
⇒ Important effect

Space-time evolution is taken into account in modeling



Getting a sense for the numbers – RHIC
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Oversimplified calculation: 
-Fit pp with power law 
-Apply energy shift or relative E loss 

Not even a model !

Ball-park numbers: ΔE/E ≈ 0.2, or ΔE ≈ 3 GeV  
for central collisions at RHIC

π0 spectra Nuclear modification factor

PH
EN

IX, PR
D

 76, 051106, arXiv:0801.4020
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Looking outside the jet cone
C

M
S, arXiv:1102.1957

In Cone R<0.8 Out of Cone R>0.8

PYTHIA+HYDJET

CMS measured

∑ −=
tracks

jetTpp
missT

)cos(//
,

ϕϕ

Momentum imbalance  
restored by hadrons at  
large angle R>0.8 and  

small pT < 2 GeV/c



Longitudinal fragment distributions
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ATLAS, arXiv:1406.2979

Characteristic pattern observed: !
• enhancement at low pT < 3 GeV!
• suppression at intermediate pT: 5-15 GeV!
• enhancement (or close to 1) at high pT > 20 GeV
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Hadron-recoil jet measurements

68
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G. de Barros et al., arXiv:1208.1518

pT,jet< 20 GeV/c:  
No change with trigger pT 

Combinatorial background

Hadron-triggered recoil jet distributions

pT,jet> 20 GeV/c:  
Evolves with trigger pT 

Recoil jet spectrum
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Remove background by 
subtracting spectrum with 
lower pT

trig:  

Δrecoil =[(20-50)-(15-20)]    

Reference spectrum (15-20) 
scaled by ~0.96 to account 

for conservation of jet 
density

Background subtraction: Δrecoil

Unfolding correction for background fluctuations and detector response

Δrecoil measures the change of the recoil spectrum with pT
trig
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Recoil jet yield  ΔIAA
PYTHIA ≈0.75, approx. constant with jet pT

R=0.4 
!
Constituents:  
pT

const > 0.15 GeV/c 
!
no additional cuts 
(fragmentation bias) on 
recoil jets

pp reference: PYTHIA  
(Perugia 2010)  

 

Ratio of Recoil Jet Yield  ΔIAA
PYTHIA
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R=0.4

  
 

Recoil Jet ΔIAA
PYTHIA: R dependence

Similar ΔIAA
PYTHIA for R=0.2 and R=0.4

R=0.2

No visible broadening within R=0.4
(within exp uncertainties)
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Hadrons vs jets II: recoil

PR
L108 092301

Hadrons Jets

Hadron IAA = 0.5-0.6
In approx. agreement with models;  
elastic E-loss would give larger IAA

Jet IAA = 0.7-0.8
Jet IAA > hadron IAA 
Not unreasonable

NB/caveat: very different momentum scales !
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Model comparison IAA

JEWEL: Zapp et al., EPJ C69, 617

JEWEL correctly describes 
inclusive jet RAA

JEWEL ΔIAA~0.4, below measured 
YAJEM agrees with measurement

Difference in energy loss or geometry?


