More than one mystery

A personal assessment of ALICE results from RUN1 data

Reminder

The objectives of the LHC heavy-ion scientific program

Thermodynamics of strongly interaction matter

How does the complexity of matter emerge from the dynamics of the strong interaction

The ALICE core mandate

Establish the fundamental properties of strongly interacting matter through complete* precision measurement

* $p_t \sim T \oplus PID \oplus p_t \gg \Lambda_{QCD}$

4 Y. Schutz @ Tsukuba, 10/2014

Established facts: exp

 At LHC temperatures matter has the properties of a perfect* liquid**

The Quark-Gluon Plasma, a nearly perfect fluid

- L. Cifarelli¹, L.P. Csernai² and H. Stöcker³ DOI: 10.1051/epn/2012206
- Dipartimento di Fisica, Universita di Bologna, 40126 Bologna, Italy;
- ² Department of Physics and Technology, University of Bergen, 5007 Bergen, Norway;
- ∎ ³GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany

We are living in interesting times, where the World's largest accelerator, the Large Hadron Collider, has its most dominant successes in Nuclear Physics: collective matter properties of the Quark-Gluon Plasma (QGP) are studied at a detail which is not even possible for conventional, macro scale materials.

- * non-dissipative
- ** strongly interacting

What is a liquid? Gel, cream or paste

Established facts: theory

 smooth* transition from hadron gas to QGP, Z₃ symmetry restored

- * not a phase transition, not SB
- ** quark mass reverts to Higgs mass

Standard strategy

Large and dense: heavy-ion physics

• Small and dilute: comparison measurement

Standard strategy

Large and dense: heavy-ion physics

AA → pQCD + Npdf + FF + collectivity

- Small and dilute: comparison measurement
 - ▷ pp → pQCD + pdf + FF
 - ▷ pA → pQCD + Npdf + FF

But ... High M pp/pA

- particle production
- momentum spectra
- HBT radii
- Ridges
- Quarkonia suppression

Toward a new paradigm ?

Collectivity everywhere !

 A coherent experimental and theoretical approach to statistical QCD from e+e- to AA

Mysteries

a personal assessment

questions for theory

- IS at LHC: classical gluon fields ? strongly or weakly coupled ?
- dynamics: from IS to an hydro liquid in 0.5 fm/c
- DoF: quasi-particle free medium ? just above T_H ? hadronization ?

questions for theory

- IS at LHC: classical gluon fields ? strongly or weakly coupled ?
- dynamics: from IS to an hydro liquid in 0.5 fm/c
- DoF: quasi-particle free medium ? just above T_H ? hadronization ?

- How can experiment constrain this physics of equilibration in QCD ?
- LHC offers most favorable conditions
 - very low x
 - non dissipative medium

soft: $p_T \sim T$, Λ_{QCD} probe the bulk

hadrons production

S enhancement, K* suppression

p suppression, d enhancement

7 order of magnitude p, d, nuclei $T_H = 155 \text{ MeV}$

hadrons production

$< p_t > vs M$

pp: not an incoherent superposition of multi parton interactions (CR)

pA: not an incoherent superposition of NN collisions (EPOS + hydro)

Collectivity everywhere ? Models !

Heavy-ion collisions 4 Hydrodynamics

Back to Hydro Dynamics of QGP !

Baryon & Meson

spectra + PID

 $\frac{p + \overline{p}}{\pi^+ + \pi^-}$

Ratio

ALICE s_{NN}=2.76 TeV

• 0-5% Pb-Pb

pp

 $\frac{K^{+} + K^{-}}{\pi^{+} + \pi^{-}}$

0-5% Pb-Pb

- Kraków

···· Fries et al

EPOS

Baryon & Meson strange

spectra + PID

 $\frac{p + \overline{p}}{\pi^+ + \pi^-}$

ALICE \s_{NN}=2.76 TeV

• 0-5% Pb-Pb

<u>م</u> م

 $\frac{K^{+} + K^{-}}{\pi^{+} + \pi^{-}}$

0-5% Pb-Pb

- Kraków

···· Fries et al.

- EPOS

Baryon & Meson pPb as well !

Baryon & Meson

Baryon & Meson

Mass rather than quark content

26 Y. Schutz @ Tsukuba, 10/2014

spectra + PID

Baryon & Meson

collective effects: radial flow +

Mass rather than quark content

27 Y. Schutz @ Tsukuba, 10/2014

Blue shift

Radial flow

p-Pb and pp: (stronger) radial gradient !

p-p: FS mechanism that mimics radial flow !!

29 Y. Schutz @ Tsukuba, 10/2014

hadronization through q coalescence \rightarrow q DoF at T > T_H?

hadronization through q coalescence \rightarrow q DoF at T > T_H?

31 Y. Schutz @ Tsukuba, 10/2014

pp: hydro flow, as well ! the embarrassing success of hydro

pp: hydro flow, as well ! the embarrassing success of hydro

33 Y. Schutz @ Tsukuba, 10/2014

n flow

Dissipation in the perfect liquid is minimal:

The QGP is transparent to quantum fluctuations in the IS

n flow

Dissipation in the perfect liquid is minimal:

The QGP is transparent to quantum fluctuations in the IS

IS: weakly coupled pure gauge field + quantum fluctuations non dissipatif hydro + classical field dynamics

hard: $p_{T,} m_{T} \gg T, \Lambda_{QCD}$ probe QGP at high resolution scale (DoF)

jets follow trend of leading hadron

Where is the lost energy radiated ?

$A = f(\sqrt{s}, T, E_{jet}, L_{medium})$

How do these results constrain quantitatively the medium properties ?

Do theory and experiment speak the same language ?

Can we experimentally discriminate between perturbative and strongly coupled approaches ?

R_pA

No medium final state effect in pPb ??

No medium final state effect in pPb ??

RpA

Another manifestation of transverse flow

Raa: D vs π

Color charge dependence (g vs q)?

RAA: D vs B

Mass dependence (c vs b)?

RAA: D vs B

Radiative or collisional? Flavor dependence ! But...

Flow ? coalescence ? dof ?

Quarkonia: c

Raa & V2

hard process ⊕ color screening ⊕ coalescence

deconfined c in QGP \rightarrow statistical hadronization ?

> continuous melting/creation in QGP → freeze out ?

Quarkonia: c

ALICE, p-Pb $s_{NN} = 5.02 \text{ TeV}$, inclusive J/ ψ , $\psi(2S) \rightarrow \mu^{+}\mu^{-}$ $2.03 < y_{cms} < 3.53$ -4.46 < y ____ < -2.96

5

6

7

 $p_{_{\rm T}}$ (GeV/c)

More than (anti-)shadowing for $\psi(2S)$??

 $\left[\sigma_{\psi(2S)}/\sigma_{J^{(\psi)}}\right]_{pPb}/\left[\sigma_{\psi(2S)}/\sigma_{J^{(\psi)}}\right]_{pp}$

1.4

1.2

0.8

0.6

0.4

0.2

0

0

2

1

3

48 Y. Schutz @ Tsukuba, 10/2014

Time to conclude

A new chapter of QCD textbook

What is the physics of equilibration in QCD ?

B How is minimal dissipation realized ?

What is the QGP made of ?

« It is made of quarks and gluons»

- Frank Wilczek, QM2014 -