THIS IS THESIS RESULTS : NOTHING IN THIS SLIDE REPRESENTS PHENIX COLLABORATION'S OFFICIAL STATEMENT!!

Event shape dependence of jet correlations at RHIC

Takahito Todoroki University of Tsukuba 2014/July/19 Heavy Ion Café @ University of Tokyo

Jet-Quenching

Ψ_2 Dependence of Suppression in High \mathbf{p}_{T} correlations

- Monotonic suppression with increase of path length, which can be taken as "parton energy loss"
- ♦ Where deposited energy goes?

Conical Emission of Intermediate p_T correlations

Two-Particle Correlations

Three-Particle Correlations

- ♦ Away-side double hump in two-particle correlations
- ♦ Conical Emission confirmed by three-particle correlations
- ♦ Seems parton-medium interactions

Models for Double-Hump : 1

 Cherenkov gluon radiation by superluminal partons

$$\cos\theta_c = 1/n(p)$$

$$n(p)$$
 : Index of refraction
 p : Gluon Momentum
PRL 96.172302 (2006)

Shock-wave by supersonic partons

$$\cos\theta_{Mach} = c_s / v_{part}$$

- C_S : Speed of sound
- v_{part} : Speed of parton

Phys. Rev. C 73, 011901(R), (2006) PRL 105.222301 (2010)

Models for Double-Hump : 2

 Energy-momentum loss + expanding medium

$$\begin{aligned} \partial_{\mu}T^{\mu\nu} &= S^{\nu} \\ S^{\nu}(t,\vec{x}) &= \frac{1}{(\sqrt{2\pi}\sigma)^3} \exp\left[-\frac{[\vec{x}-\vec{x}_{jet}(t)]^2}{2\sigma^2}\right] \\ &\times \left(\frac{dE}{dt},\frac{dM}{dt},0,0\right) \left[\frac{T(t,\vec{x})}{T_{max}}\right]^3 \end{aligned}$$

PRL 105.222301 (2010)

- ♦ Hot spot+ expanding medium
 - Split of the hot spot into two directions

Phys. Let. B 712 (2012) 226-230

2014/7/19

HIC

Higher-Order Event-Planes & Flow-Harmonics

Smooth participant density

Expansion to the short-axis direction by pressure gradient

Fluctuating participant density

Expansion to the short-axis directions of event-planes by pressure gradient

Azimuthal distribution of emitted particles

$$\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\phi - \Psi_2) + 2v_3 \cos 3(\phi - \Psi_3) + 2v_4 \cos 4(\phi - \Psi_4) ... v_n = < \cos (\phi - \Psi_n) >$$

- **v**_n : Higher-order flow harmonics
- Ψ_n : Higher-order event planes
- ϕ : Azimuthal angle of emitted particles

Higher-Order Flow Harmonics

PRL107.252301 (2011)

Motivation of analysis

- Providing experimental results of two-particle correlations after v_n background subtractions
- \diamond Examine the path length dependence of Ψ_2 dependent intermediate-p_T correlations in order to search for deposited energy from high p_T partons
- \diamond Search for differences between Ψ_2 & Ψ_3 dependent correlations which may reflects possible different evolution processes between the 2nd- and 3rd-order geometry planes

Analysis Flow-Chart

PHENIX 2007 Experiment: Au+Au 200 GeV Collisions

- ♦ Minimum Bias trigger : 4.4 billion events
- ♦ Trigger, collision vertex, centrality
 - Zero-Degree-Calorimeter(ZDC)
 - Beam-Beam-Counter (BBC)
- ♦ Event-plane
 - BBC
 - Reaction-Plane-Detector(RXN)
- \diamond Central Arm, $\Delta \phi = \pi$, $|\eta| < 0.35$
 - Drift Chamber (DC)
 - Pad Chambers(PC)
 - Electromagnetic Calorimeter(EMC)
 - Momentum, charged particle tracking
 - Ring Image Cherenkov Detector(RICH)
 - Electron rejection

Event-Plane

- Expansion to the initial short-axis direction
 by pressure gradient
 - EP is a direction most particles are emitted after freeze-out
 - EP is determined by flow signal itself
 - EP is determined by RXN and BBC detectors
 - RXN (1<|η|<2.8) : 24 segments x 2 sectors</p>
 - BBC (3<|η|<3.9) : 64 segments x 2 sectors</p>

$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{\sum_i w_i \cos(n\phi_i) / \sum_i w_i}{\sum_i w_i \sin(n\phi_i) / \sum_i w_i} \right)$$

- $\phi_i:$ Azimuthal angle of $i^{ ext{th}}$ segments
- w_i : Weight (Charge etc.) of *i*th segments

Rapidity Selections in Analysis

♦ Rapidity ranges of CNT, RXN, & BBC

- 2PC at $|\Delta\eta|$ <0.35
- Rapidity gap between particles & EP to avoid auto-correlations by jets

v_n Results

Consistent results with previous PHENIX measurements

Used for background subtractions

Two-Particle Correlations

Definition

Ratio of two-particle probability over single-particle ones

$C(\Delta\phi,\Delta\eta) =$	$P(\phi^a, \phi^t \eta^a, \eta^t)$
	$\overline{P(\phi^a \eta^a)P(\phi^t \eta^t)}$

Experimental Def.

Ratio of real pair distribution over mixed one

$$C(\Delta\phi,\Delta\eta) = \frac{N_{mix}^{ta}}{N_{real}^{ta}} \frac{d^2 N_{real}^{ta}}{d^2 N_{mix}^{ta}} \frac{d\Delta\phi d\Delta\eta}{d\Delta\phi d\Delta\eta}$$
$$\Delta\phi = \phi^a - \phi^t, \Delta\eta = \eta^a - \eta^t$$

Correlations = Real/Mixed

Event mixing also corrects acceptance effects by choosing similar events: centrality, collision points

Pair Yield Per a Trigger

Dimension : Number of Particles

$$\frac{1}{N^t} \frac{d^2 N^{ta}}{d\Delta \phi d\Delta \eta} = \frac{1}{2\pi\varepsilon} \frac{N^{ta}}{N^t} C(\Delta \phi, \Delta \eta)$$

Flow Subtraction & Pair Yield per a Trigger (PTY)

♦ Pure flow background

$$F(\Delta\phi) = 1 + \sum 2v_n^t v_n^a \cos\left(n\Delta\phi\right)$$

♦ Flow subtractions by ZYAM
 – Zero Yield At Minimum Assumption

$$j(\Delta\phi) = C(\Delta\phi) - b_0 \left[1 + \sum_{n=1}^{\infty} 2v_n^t v_n^a \cos\left(n\Delta\phi\right) \right]$$

- \diamond Pair yield per a trigger (PTY)
 - -Dimension : <u>number of particles</u>

$$\frac{1}{N^t}\frac{dN^{ta}}{d\Delta\phi} = \frac{1}{2\pi\varepsilon}\frac{N^{ta}}{N^t}j(\Delta\phi)$$

- ε : Tracking efficiency of associate particles
- N^t : Number of triggers
- N^{ta} : Number of pairs

Trigger Selection with respect to Event-Plane

- Expansion to the short-axis direction by pressure gradient
 - EP : direction most particles are emitted after freeze-out
- \diamond Selecting trigger particles with respect to Ψ_2 & Ψ_3

- 8 bins :
$$\phi^{trig} - \Psi_n : [-\pi/n, \pi/n]$$

- Control of path length of trigger and associate particles
- \diamond Three p_T combinations: 2-4x1-2, 2-4x2-4, 4-10x2-4 GeV/c

Flow Backgrounds with respect to EP

- A Monte Carlo simulation employed
- ♦ Azimuthal distribution using
 - Measured v_n
 - - <6(Ψ₂-Ψ₃)>=0
 - Measured v_n Observed correlation between EP $\frac{dN}{d\phi} \propto 1 + \sum_{n=2,3,4} 2v_n \cos n(\phi \Psi_n)$
- ♦ Determine trigger particle relative to EP taking into account EP resolutions
- **Calculate two-particle correlations**

Flow Backgrounds with respect to EP

- ♦ Good reconstruction of $\Psi_{2,}$ Ψ_3 dependent correlations by MC simulation
 - Before PTY normalization
- Except around Δφ=0, π
 where contribution of iet
 exists Correlations
 Pure Flow
 - : EP Direction
 - : Back-to-Back Direction

Two-Particle Correlations with respect to EP

- ♦ Flow subtracted Ψ_{2} , Ψ_{3} dependent correlations
- $\diamond\,$ Clear Ψ_2 dependence
- \diamond No Ψ_3 dependence?
- Smearing by neighboring trigger bins due to limited EP resolution
 - Needs unfolding !!

Unfolding Methods of EP Resolution

Fitting Method

 Azimuthal anisotropy of correlation yield corrected by the event-plane resolution

Method by PRC.84.024904 (2011)

Iteration Method

- Trigger smearing matrix "S"
- ♦ True & Observed Correlations "A" & "B"
- Vector elements : Trigger bin
- ♦ Solve simultaneous equations via iteration

$$\mathbf{B} = \mathbf{S}\mathbf{A} \implies \mathbf{A} = \mathbf{S}^{-1}\mathbf{B}$$

v_n (n=2,3,4) subtracted correlations

Au+Au $\sqrt{s_{NN}}$ =200 GeV, v_n (n=2,3,4) subtracted

\boldsymbol{p}_{T} spectra of Per Trigger Yields

- \diamond Hardness increases with trigger and associate \textbf{p}_{τ}
- \diamond Existence of high p_{T} particles enhances lot p_{T} particles

Extraction of Double-Hump Position

↔ Extraction of double-hump position via two-Gaussian fitting to away-side ($|\Delta \phi - \pi| < \pi$) at centrality 10%>, where doublehumps seen

$$F(\Delta \phi) = A e^{-\frac{(\Delta \phi - \pi - D)^2}{\sigma^2}} + A e^{-\frac{(\Delta \phi - \pi + D)^2}{\sigma^2}}$$

Two-Gaussian Height

Ouble-hump height more than one sigma of systematic uncertainties

Comparison with Models

- \diamond Cherenkov gluon : <25 % of experimental data at p_T =1 GeV/c
- ♦ Mach-cone & Energy-momentum loss :
 - Independence of p_T is similar to the experimental data
 - 20 % larger/smaller than experimental data at $p_T = 2 \text{ GeV/c}$
- ♦ Hot-spot : 50% larger than experimental data

Realistic Model Calculation

- ♦ Fluctuations of initial parton energy density
- ♦ Parton cascade
- Event-by-event (3+1)D hydrodynamics
- ♦ Parton Energy Momentum Loss

$\Psi_2 \& \Psi_3$ Dependent Correlations at p_T:2-4x1-2 GeV/c

 $\diamond \Psi_{\mathbf{2}}$ dependence is observed at intermediate-p_T correlations

Near-Side Integrated Yield vs Associate Angle from Ψ_2

- ♦ Similar near and away-side trends
- ♦ p_T 2-4x2-4, 4-10x2-4 GeV/c : in-plane >= out-of-plane
 - Consistent with the parton energy loss picture
- ♦ p_T 2-4x1-2 GeV/c
 - 0-10% : Out-of-plane > In-plane
 - 40-50% : In-plane > Out-of-plane
 - More than 1 σ significance of total systematics

STAR Result of $\Psi_{\rm 2}$ Dependent Correlations

Au+Au 200 GeV, 20-60%, 3_{\tau}^{(t)}<4 GeV/c, 1<p $_{\tau}^{(a)}$ <2 GeV/c, $|\eta|$ <1 v_n(n=2,3,4) subtracted

♦ Consistent with the results in mid-central collisions by PHENIX

Interpretation of Ψ_2 Dependent Correlations

Hydro + energy redistribution

Purposes and Methods

- Purpose of this study

Study the <u>collective response</u> to jet propagation in QGP transport of the jet's lost energy

- Method

Hydrodynamical simulations of di-jet asymmetric events in heavy ion collisions

- Relativistic hydrodynamic equations with source terms

Hydrodynamic equations with incoming energy and momentum

$$\partial_{\mu}T^{\mu\nu} = J^{\nu}$$

 $T^{\mu
u}$: energy-momentum tensor of the QGP fluid

 $J^{
u}$: source term (energy-momentum deposit from jets)

QM'14 Y. Tachibana

- Source terms

Assume sudden thermalization of deposited momentum inside a fluid cell

$$J^{\mu}(x) = -\sum_{a} \frac{dp_{a}^{\mu}}{dt} \delta^{(3)} \left(\boldsymbol{x} - \boldsymbol{x}_{a}(t) \right)$$

a : index for each jet particle

- Collective flow induced by a jet

Test study result in the case of 1-jet traveling through a uniform fluid

Integrated Yield vs Associate Angle from $\Psi_{\rm 3}$

- ♦ Weak centrality dependence
- ♦ Event-plane dependence is not clearly seen
 - Flat within systematic uncertainties

Out Look : Event-Shape Engineering

 $\diamond \mathbf{Q}\text{-vector}$ $Q_{n,x} = \sum_{i}^{M} \cos(n\phi_i); \ Q_{n,y} = \sum_{i}^{M} \sin(n\phi_i);$

♦ Selection of flow rich events

♦ Differential analysis of medium response

Summary

 $\diamond v_n$ subtracted correlations are presented

- \diamond Non-monotonic path-length dependence is seen in Ψ_2 dependent correlations at low ${\rm p_T}$
 - Can be taken as re-distribution of deposited energy?

 \diamond Non- Ψ_3 dependence is observed due to large systematics

BACK UP
Significance of Double-Hump

- ♦ Examined the significance of Double-Hump in terms of v₄ systematics
- ↔ v₂ and v₃ are fixed in flow subtractions but v₄ is varied ±1σ
- Lower boundary of yellow band covers that of green band
- ♦ Significance is $\pm 1\sigma$ level of v_4 systematics

Zero Yield at Near-Side

♦ Correlation and Pure Flow is fitted at $\Delta \phi = 0$ ♦ Double-hump is not so sensitive to flow subtraction

Consistency check : high- p_T trigger

- ♦ Three-Centralities
 - 0-20, 20-40,40-60%
- ♦ Particle Selections
 - Trigger p_T:5-10 GeV/c
 - Associate $p_T : 1-10 \text{ GeV/c}$
- ♦ Subtracted Backgrounds
 - Only v_2
- Consistent with previous
 PHENIX results
 (PRC78.014901)

Consistency check : $mid-p_T$ trigger

- ♦ Three-Centralities
 - 0-20, 20-40,40-60%
- ♦ Particle Selections
 - Trigger p_T: 4-5 GeV/c
 - Associate $p_T : 1-5 \text{ GeV/c}$
- ♦ Subtracted Backgrounds
 - Only v_2
- Consistent with previous
 PHENIX results
 (PRC78.014901)

Consistency check : $low-p_T$ trigger

- ♦ Three-Centralities
 - 0-20, 20-40,40-60%
- ♦ Particle Selections
 - Trigger p_T: 2-4 GeV/c
 - Associate $p_T : 1-4 \text{ GeV/c}$
- ♦ Subtracted Backgrounds
 - Only v_2
- Consistent with previous
 PHENIX results
 (PRC78.014901)

High p_T Trigger Two-Particle Correlations

Intermediate p_T Two-Particle Correlations

Ψ_2 Dependent Correlations : p_T 2-4x1-2 GeV/c

Ψ_3 Dependent Correlations : p_T 2-4x1-2 GeV/c

Ψ_2 Dependent Correlations : p_T 2-4x2-4 GeV/c

Ψ_3 Dependent Correlations : p_T 2-4x2-4 GeV/c

Ψ_2 Dependent Correlations : p_T 4-10x2-4 GeV/c

Ψ_3 Dependent Correlations : p_T 4-10x2-4 GeV/c

Ψ_2 Dependent Correlations : p_T 2-4x1-2 GeV/c

Ψ_3 Dependent Correlations : p_T 2-4x1-2 GeV/c

Gravity Position of Two-Particle Correlations

Definition

$$A_{LR} = \frac{\int d\Delta \phi \Delta \phi Y(\Delta \phi)}{\int d\Delta \phi Y(\Delta \phi)} - \begin{cases} 0 \text{ if near} - \text{side} \\ \pi \text{ if away} - \text{side} \end{cases}$$

Integral Ranges

Near – Side :
$$|\Delta \phi| < \pi/3$$

Away – Side : $|\Delta \phi - \pi| < \pi/3$

Gravity position vs trigger angle from $\Psi_{\rm 2}$

2014/7/19

HIC

Gravity position vs trigger angle from $\Psi_{\rm 3}$

2014/7/19

HIC

Pair Selection on Tracking Detectors

Systematic Uncertainties

\diamond Flow v_n measurements

- Systematic difference within RXN segments
- Rapidity dependence of EP : RXN-BBC difference
- Matching cut of CNT particles
- \diamond Two-particle correlations
 - Systematics from v_n
 - Matching cut of CNT particles
- Output States of the state o
 - Difference of two methods : Fit & Iteration Methods
 - Parameter in the iteration method

Azimuthal Anisotropy of PTY

- Integrated yield vs associate angle from EP is translated into azimuthal anisotropy v_n^{PTY}
- v_n^{PTY} can be compared with single particle v_n because the dimension of PTY is "# of particles"

$\diamond \, \mathbf{v}_n^{\ \mathrm{PTY}}$ is extracted via Fourier fitting

$$\begin{split} \Psi_2 \mbox{ dependence } F(\phi^a - \Psi_2) &= a\{1 + 2v_2^{PTY}\cos 2(\phi^a - \Psi_2) + 2v_4^{PTY}\cos 4(\phi^a - \Psi_2)\} \\ \Psi_3 \mbox{ dependence } F(\phi^a - \Psi_3) &= a\{1 + 2v_3^{PTY}\cos 3(\phi^a - \Psi_3)\}, \end{split}$$

♦ Anisotropy of associate particles per a trigger → Anisotropy of associate particles per a event

$$v_n^{PTY,cor} = v_n^{PTY} + v_n^{trig} \cos n(\phi^t - \phi^a)$$

V2^{PTY}

- ♦ Positive $\pi^0 v_2$ (Parton energy-loss)
 - Superposition of those assembles only positive v₂
- Near & away-side v₂^{PTY}
 - Positive value at 40-50%
 - Near-side negative value at 0-10%
- New effects need to be considered
- Possible re-distribution of deposited energy in longer path direction

V_3^{PTY}

- Positive hadron v₃ (Hydrodynamics)
- \diamond Near & away-side v₃^{PTY} at 30-40%
 - Positive near-side
 - Negative away-side
- ♦ Weak centrality dependence
- Different near & away-side, as well as centrality dependences from those of v₂^{PTY}
- Possible different evolution
 processes between the 2nd- and
 3rd-order geometry planes

Interpretation of $\Psi_{\mathbf{3}}$ Dependent Correlations

Collision Centrality

- ♦ A degree of overlap of two colliding nuclei
 - Distance between center of the nuclei \rightarrow multiplicity \rightarrow charge deposited in BBC
- **Require each percentile contains same # of events** \diamond
 - Most-central Collision : 0%
 - Most-peripheral Collision : 100% (PHENIX determines it up to 92%)

2014/7/19

Central Collisions

2000

BBC charge sum

2500

1000

1500

0 - 10 %

Nuclear Modification Factor R_{AA}

♦ Ratio of invariant yield scaled by that in p+p collision with scale

- R_{AA} <1(suppression), R_{AA} =1(no change), R_{AA} >1(enhance)
- Suppression of hadron production
- No suppression of direct photon

Contributions of v_n (n>2) in correlations

♦ Double-hump & ridge of long-rapidity correlation explained

Short-rapidity correlation with v_n subtraction to discuss parton behavior

Data Set & Particle Selection

- ♦ PHENIX year 2007 Experiment
- \diamond Au+Au collisions at v_{NN} =200 GeV
 - Minimum Bias trigger 4.4 billion events
- Charged hadron selection
 - -2σ cut of track-hit matching
 - Electron veto
 - Energy/momentum cut of high p_T particles for background rejection
 - E^{EMC}<0.30+0.20*p_T rejected for p_T>5.0 GeV/c
 - Pair cut of miss-reconstructed hadron pairs

Tracking Efficiency

Efficiency correction by ratio
 of uncorrected invariant yield
 over fully corrected ones

 $\varepsilon = \frac{\sigma^{uncor}}{\sigma^{cor}}$

 Ratio calculated by fitting functions to the invariant yields

Fit Function

$$F(p_T) = p_0 * \left(\frac{p_1}{p_1 + p_T}\right)^{p_2}$$

Event Plane Calibration

Raw distribution

$$Q_x = \sum_i w_i \cos(n\phi_i), Q_y = \sum_i w_i \sin(n\phi_i)$$
$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{Q_y}{Q_x}\right)$$

Re-centering

$$Q_x^{Rec} = \frac{Q_x - \langle Q_x \rangle}{\sigma_x}, Q_y^{Rec} = \frac{Q_y - \langle Q_y \rangle}{\sigma_y}$$
$$\Psi_n^{Rec} = \frac{1}{n} \tan^{-1} \left(Q_y^{Rec} / Q_x^{Rec} \right)$$

Fourier correction

$$n\Psi_{n}^{Fourier} = n\Psi_{n}^{Rec} + n\Delta\Psi_{n}$$
$$n\Delta\Psi_{n} = \sum_{k} \left\{ A_{k}\cos\left(kn\Psi_{n}^{Rec}\right) + B_{k}\sin\left(kn\Psi_{n}^{Rec}\right) \right\}$$
$$A_{k} = -\frac{2}{k} \left\langle \cos\left(kn\Psi_{n}^{Rec}\right) \right\rangle, B_{k} = \frac{2}{k} \left\langle \sin\left(kn\Psi_{n}^{Rec}\right) \right\rangle$$

Event Plane Resolution

EP Resolution

PRC 58.1671 (1998)

↔ Resolution +/-η

$$\sigma_n^{EP} = \sqrt{\left\langle \cos kn (\Psi_n^{EP(+\eta)} - \Psi_n^{EP(-\eta)}) \right\rangle}$$
$$= \left\langle \cos kn (\Psi_n^{EP+/-\eta} - \Psi_n) \right\rangle$$
$$= \frac{\pi}{8} \chi_n^2 \left[I_{(k-1)/2} \left(\frac{\chi_n^2}{4} \right) + I_{(k+1)/2} \left(\frac{\chi_n^2}{4} \right) \right]^2$$

\diamond Resolution +&- η

$$-\chi_{n} \rightarrow \sqrt{2}\chi_{n}$$

$$\sigma_{n}^{EP} = \frac{\pi}{8} 2\chi_{n}^{2} \left[I_{(k-1)/2} \left(\frac{2\chi_{n}^{2}}{4} \right) + I_{(k+1)/2} \left(\frac{2\chi_{n}^{2}}{4} \right) \right]^{2}$$

v_n systematics : RXN segments

v_n systematics : Matching Cut

v_n systematics : RXN-BBC Difference

Table of total v_n systematic uncertainties

Table 3.8: Summary of percentile ratio of v_n systematic uncertainties					
Centrality %	$p_T \ { m GeV}/c$	v_2 sys. %	v_3 sys. %	v_4 sys. %	$v_4\{\Psi_2\}$ sys. %
0-10	0.5-1.0	5.449	6.387	24.87	48
	1.0-2.0	4.32	4.911	10.1	14.66
	2.0-4.0	4.536	4.131	4.412	11.39
	4.0 - 10.0	10.43	6.184	21.67	191.3
10-20	0.5 - 1.0	3.658	7.992	28.53	12.17
	1.0-2.0	2.891	6.431	20.16	12.27
	2.0-4.0	2.69	6.163	27.64	13.72
	4.0-10.0	3.124	13.62	19.09	32.09
20-30	0.5-1.0	2.811	9.469	35.48	9.633
	1.0-2.0	2.485	7.818	28.85	8.422
	2.0-4.0	2.391	6.822	28.03	6.577
	4.0-10.0	2.98	9.503	32.24	12.21
30-40	0.5-1.0	2.506	12.42	35.81	7.385
	1.0-2.0	2.462	9.695	29.88	6.509
	2.0-4.0	2.556	9.673	36.75	5.913
	4.0 - 10.0	2.934	14.18	44.32	31.73
40-50	0.5-1.0	2.575	13.8	32.96	6.338
	1.0-2.0	2.688	12.06	34.44	6.479
	2.0-4.0	3.224	11.7	45.4	10.71
	4.0-10.0	7.877	33.53	77.07	29.33

Systematics of Correlations

- ♦ Systematics propagated from v_n measurements
 - Varying v_n value $\pm 1\sigma$ (# of harmonics 3 x $\pm 1\sigma$ 2 = 6 combinations)
 - Systematics : RMS of above 6 combinations
- ♦ Systematics from matching cut
 - Systematics : Difference between
 2.5σ-2.0σ (main)
- ♦ Total Systematics
 - Quadrature-sum of above two systematics

Centrality:20-30% $v_2 v_3 v_4$ sub. $- \circ$ centroid $- v_2 \pm 1\sigma$ $- v_3 \pm 1\sigma$ $- v_4 \pm 1\sigma$ - Systematics

- Centrality:20-30% $v_2 v_3 v_4$ sub. $\rightarrow \sigma=2.0$
- -**↔** σ=2.5
- **- - - - 2**.5σ-2.0σ
EP Resolution in Monte Carlo

♦ Analytical formula of EP Resolution (RXN:S+N) as a function of χ_n − Convert Resolution to γ_n

$$\left\langle \cos\left[kn(\Psi_{n}^{obs} - \Psi_{n}^{real})\right] \right\rangle = \frac{\sqrt{\pi}}{2\sqrt{2}} \chi_{n} e^{-\chi_{n}^{2}/4} \left[I_{(k-1)/2} \left(\frac{\chi_{n}^{2}}{4}\right) + I_{(k+1)/2} \left(\frac{\chi_{n}^{2}}{4}\right) \right].$$

 $\diamond\,$ Relative distribution between real and observed EP calculated using χ_{n}

$$\frac{dN^{eve}}{d[kn(\Psi_n^{obs} - \Psi_n^{real})]} = \frac{1}{\pi} e^{-\chi_n^2/2} \left[1 + z\sqrt{\pi} [1 + \operatorname{erf}(z)] e^{z^2} \right] \qquad z = \frac{1}{\sqrt{2}} \chi_n \cos n(\Psi_n^{obs} - \Psi_n^{real})$$
PRD 48.1132 (1993)
$$PRD 48.1132 (1993)$$

Centrality

$\Psi_2 \mbox{-} \Psi_4$ correlation in Monte Carlo

 $\Rightarrow \Psi_{2} - \Psi_{4} \text{ correlation at } p_{T} \text{ 1-2\&2-4GeV: } \langle \cos [4(\Psi_{2} - \Psi_{4})] \rangle = v_{4} \{\Psi_{2}\} / v_{4} \{\Psi_{4}\}$

- To avoid jet contribution to the Ψ_2 - Ψ_4 correlation

 \diamond Obtain χ_{42} & reconstruct relative distribution between Ψ_2 & Ψ_4

$$\left\langle \cos\left[4(\Psi_2 - \Psi_4)\right] \right\rangle = \frac{\sqrt{\pi}}{2\sqrt{2}} \chi_{42} e^{-\chi_{42}^2/4} \left[I_0\left(\frac{\chi_{42}^2}{4}\right) + I_1\left(\frac{\chi_{42}^2}{4}\right) \right]$$
$$\frac{dN^{eve}}{d[kn(\Psi_n^{obs} - \Psi_n^{real})]} = \frac{1}{\pi} e^{-\chi_n^2/2} \left[1 + z\sqrt{\pi} [1 + \operatorname{erf}(z)] e^{z^2} \right] \quad z = \frac{1}{\sqrt{2}} \chi_n \cos n(\Psi_n^{obs} - \Psi_n^{real})$$

2014/7/19

HIC

Ψ_2 - Ψ_3 correlation

PRL107.252301 (2011)

A : RXN North B : BBC South

- **C : MPC North**
- **D** : MPC South

EP Resolution Correction : Iteration-1

- Trigger bin is also smeared due to limited EP resolution as v_n
 - Add an offset $\lambda = 1.0$ to correlation Y to avoid possible divisions by zero

2014/7/19

EP Resolution Correction : Iteration-2

- Start of iteration : experimental results (already smeared once)
- Obtained correction is not true
- Iteration until conversions of each coefficients
 - 300 Loops
 - **Notation in Iteration**
 - $egin{aligned} \mathbf{A} &
 ightarrow \mathbf{A}^{(\mathbf{n})} \ & \mathbf{B} &
 ightarrow \mathbf{B}^{(\mathbf{n})} \ & \mathbf{C} &
 ightarrow \mathbf{C}^{(\mathbf{n})} \ & \mathbf{A}^{\mathbf{cor}} &
 ightarrow \mathbf{A}^{(\mathbf{n+1})} \end{aligned}$

Smoothing

- \diamond Preventing a divergence of statistical fluctuations among $\Delta \phi$ bins
- ♦ 2r=0.20 & 0.30

$$c_{ii}^{(n)}(k) = (1-r)c_{ii}^{(n)}(k) + (r/2)c_{ii}^{(n)}(k-1) + (r/2)c_{ii}^{(n)}(k+1)$$
2014/7/19
HIC
77

EP Resolution Correction : Fitting Method

Near-Side Integrated Yield vs Associate Angle from Ψ_2

Away-Side Integrated Yield vs Associate Angle from Ψ_2

Near-Side Integrated Yield vs Associate Angle from Ψ_3

Away-Side Integrated Yield vs Associate Angle from Ψ_3

Anisotropy of particles per a jet -> Anisotropy of particles per a event

$$\{1 + 2v_n^{PTY} \cos n(\phi^a - \Psi_n)\} \times \{1 + 2v_n^t \cos n(\phi^t - \Psi_n)\} \\ = \{1 + 2v_n^{PTY} \cos n(\phi^a - \Psi_n)\} \times \{1 + 2v_n^t \cos n(\phi^a - \phi^t) \cos n(\phi^a - \Psi_n)\} \\ \simeq 1 + 2v_n^{PTY} \cos n(\phi^a - \Psi_n) + 2v_n^t \cos n(\phi^a - \phi^t) \cos n(\phi^a - \Psi_n)\}$$

$$v_n^{PTY,cor} = v_n^{PTY} + v_n^{trig} \cos n(\phi^t - \phi^a)$$

 V_2^{PTY}

 V_3^{PTY}

