# Study of Hot QCD matter at RHIC and LHC

#### ShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba





#### Contents

- Temperature
- Energy loss
- Collective flow
- Critical point



#### Hadronic Phase -> Partonic Phase



RHIC at BNL,  $sqrt(s_{NN}) = 10 - 200 \text{ GeV/c}$ (New York, USA) LHC at CERN,  $sqrt(s_{NN}) = 0.5 - 5.5 \text{ TeV/c}$ (Geneva, Switzerland)











### Enhanced thermal photon production at low $p_T$



- Virtual and real photon measurements via internal and external conversion methods with electron pair measurements
- Real photon measurements with EMcal
- Initial temperature of 300~600MeV





- comparable to hadron for both  $v_2$  and  $v_3$  at 2~3GeV/c
- significant contribution from photons from later stages (inconsistent with early photons from hotter period)
- flatter p<sub>T</sub> dependence of v<sub>2</sub> at low p<sub>T</sub>

### History of temperature before/after the phase transition









### Jet quenching at RHIC vs LHC (A<sub>J</sub> : di-jet energy asymmetry)

- visible effect with smaller jet cone R~0.2 at RHIC
- lower jet energy than LHC, smaller effect than LHC
- mostly recovered jet energy within larger jet cone R~0.4
- Somewhat contradicting with large angle emission of low p<sub>T</sub> particles (jet selection bias...)

Anti-k<sub>T</sub> R=0.2, p<sub>T,1</sub>>16 GeV & p<sub>T,2</sub>>8 GeV with p<sub>T</sub><sup>cut</sup>>2 GeV/c



Anti-kT R=0.4, pT,1>20 GeV & pT,2>10 GeV with pTcut>2 GeV/c



 $A_J =$ 

### jet-suppression by partonic energy loss and/or modification of fragmentation function



### **Elliptic flow with PID** at RHIC and LHC

- High statistics measurements allow • a precise comparison of  $v_2(p)$  and  $v_2(\phi)$ .
- Some small deviation from hydro-like mass dependence of  $v_2$  at low  $p_T$
- $\phi$  puzzle between peripheral and central . at LHC

 $\pi qq$ 

op qqq

Anisotropy v<sub>2</sub>

0.2

0.1

0

STAR, QM14





6



AMPT simulation p+Pb 5TeV (string-melting on/off) for ALICE backward-central  $\Delta \phi$  correlation ( $|\Delta \eta|$ =3~6)





### Triangular expansion and shape





t=0.6fm

Elliptic and Triangular expansion :  $v_2$ ,  $v_3$ 



### Cross harmonics correlation with Q<sub>2</sub> selection







APS-DNP/JPS joint meeting, Waikoloa, Hawaii, 7-11/Oct/2014

More differential studies of hard-soft interplay, jet-medium interaction, jet-flow correlation



#### methods

- Multi-particle correlation
- Jet-hadron / γ-hadron correlation
- Jet fragmentation function
- Di-jet distribution

Yet another axis as a control parameter to define path length, geometry and expansion. Please join me, if you agree...





Fluctuation of conserved quantities such as net-baryon, net-charge distribution

 $10^{5}$ 

 $10^{4}$ 

10

-20

Events 10<sup>3</sup> 10<sup>2</sup>



# Future plan

Full energy Pb+Pb collisions at LHC Luminosity upgrade at LHC Beam energy scan II at RHIC <u>A state-of-art jet detector</u> at RHIC Future facilities





## Summary

- Initial temperature and collective flow via thermal photons
- Partonic energy-loss using jets and prompt photons
- Collective flow even in small system
- Event shape selection as another control parameter
- Beam energy scan to search for a critical point
- Future facilities

