The Study Of Direct Photon Azimuthal Anisotropy At RHIC-PHENIX Experiment
What is Azimuthal Anisotropy?

Azimuthal anisotropy is relative deviation of the number of emitted particle between in and out of plane.

It is strongly related to **initial geometry** and η/s of QGP. Expansion makes anisotropy in momentum space.

Mathematically:

$$
E \frac{d^3N}{dp^3} \propto [1 + 2 \sum_{n=1}^{\infty} \nu_n \cos\{n(\phi - \Phi_n)\}]
$$

$$
\nu_n = \langle \cos\{n(\phi - \Phi_n)\} \rangle
$$

Event Plane (Φ_n):
The base direction for expansion

ν_n : strength of anisotropy
Higher Order Anisotropy

Event Plane (Φ_n) :
The base direction for expansion

$\nu_n = \langle \cos\{n(\phi - \Phi_n)\} \rangle$

$E \frac{d^3N}{dp^3} \propto [1 + 2 \sum_{n=1}^{\infty} \nu_n \cos\{n(\phi - \Phi_n)\}]$

Initial geometry is deformed because of statistics fluctuation. It makes higher order azimuthal anisotropy.

It is important to constrain initial geometry calculating model and η/s of QGP.
What is Direct Photon?

Direct photon is all photons except ones from hadron decay.
- Penetrating QGP without scattering
- Created from various sources

Direct photon
- prompt photon
- thermal photon
- parton energy loss
- photon from hadron decay

Jet fragmentation

Inclusive photon
It is expected that the photon sources are identified by azimuthal anisotropy measurement (initial geometry dependence).

- prompt: $v_2 \sim 0$
- Jet fragmentation: $v_2 > 0$
- parton energy loss: $v_2 < 0$
- thermal QGP: $v_2 \geq 0$
- thermal HG: $v_2 > 0$

Superposition is measured.

$\gamma^{\text{dir.}}$. v_2 has been measured at PHENIX and ALICE.
$\gamma_{\text{dir.}} v_2$ is close to 0 in high p_T, which is consistent with expectation. It has strong v_2 as one of hadron in low p_T.

ALICE also measure $\gamma_{\text{dir.}} v_2$ and it is found that it has similar trend.
Deviation of Temperature

$T_\gamma = 233\pm14\pm19$ MeV is observed by direct photon spectrum. It is much higher than $T_{\text{had}} = 100-120$ MeV which is freeze-out temperature.

$T_\gamma \gg T_{\text{had}}$

Azimuthal anisotropy is created from initial geometry deformation. It is needed the enough expansion time to have large v_2.

$T_\gamma \sim T_{\text{had}}$
Underestimation for $\gamma_{\text{dir.}} v_2$

Model calculation is underestimated for v_2 while spectra is well described.

Additional component is needed to describe experiment results.

- Strong magnetic field
- Blue shift
What makes large v_2?

Magnetic Field effect
2nd of Event Plane is strongly correlated with Reaction Plane while 3rd is not.

- v_2 is strong : v_3 is weak

Blue shift effect
Observed temperature is affected by flow and it is overestimated.

- v_2 and v_3 are strong

v_3 measurement helps to understand.

\[
T_{obs} \sim T_{real} \sqrt{\frac{1+<\beta>}{1-<\beta>}}
\]

$<\beta>$: average expansion velocity
Analysis flow

✓ π^0 and $\gamma^{inc.}$ v_n measurement

✓ $\gamma^{dec.}$ v_n simulation

It is simulated from π^0 v_n.

✓ $\gamma^{dir.}$ v_n calculation

$$v_n^{dir.} = \frac{R_\gamma v_n^{inc.} - v_n^{dec.}}{R_\gamma - 1}$$

$$R_\gamma = \frac{N^{inc.}}{N^{dec.}}$$
Summary

Direct photon is powerful tools to study QGP. Azimuthal anisotropy is related with initial geometry. Higher order is thought to be more important.

Direct photon v_2 has been measured at PHENIX and ALICE. It is found that it has as strong v_2 as hadron, but it is not yet understood. Model calculation is underestimated.

Direct photon v_3 is expected to help understanding. Measurement is ongoing.
BACK UP
It is known that they have weak correlation.

It is considered that 3rd order of Event Plane is defined as a deformation of initial geometry.
\[\nu_n = \langle \cos\{n(\phi - \Phi_n)\} \rangle \]

The angles of particle emission and Event Plane are measured by different detectors in order to auto-correlation (e.g. Jet). Event Plane is determined as a strong direction of flow.

\[Q_x = \langle w_i \cos(n\phi_i) \rangle \]
\[Q_y = \langle w_i \sin(n\phi_i) \rangle \]
\[\Phi_n = \text{atan2}(Q_y, Q_x) / n \]

\(i \) : direction of detector
\(w_i \) : weight
Direct photon at low p_T provides temperature of QGP.

$T_{\text{eff}} = 233 \pm 14 \pm 19$ MeV (Min. Bias.)

$T_{\text{ini}} = 300\sim600$ MeV

$T_{\text{eff}}(\text{LHC}) = 304\pm51$ MeV (2.76TeV,0-40%)

$T = 170$MeV (Lattice QCD)

$T = 100$-120MeV (hadron freeze-out)

The photon from hot matter is observed.
\[R_{AA} = \frac{\left(1/N_{AA}^{\text{evt}}\right) d^2 N_{AA}/dp_T dy}{<N_{\text{coll}}>/\sigma_{pp}^{\text{inel}} \times d^2 \sigma_{pp}/dp_T dy} \]

\begin{align*}
\text{Hadron is} & \quad \text{suppressed.} \\
\end{align*}

\(R_{AA} \) of direct photon is consistent with unity in high \(p_T \). This is consistent with the expectation that \(\gamma^{\text{dir.}} \) coming from initial scattering is dominant.
v_3 and v_4 have weak centrality dependence while v_2 has strong. It indicates v_3 and v_4 are created by the initial geometry deformation.
v_n has mass and meson/baryon dependence. Higher harmonics are created from initial geometry deformation, they are affected by the effect of QGP expansion.
KE_T scaling for PID v_n

Meson is scaled well, while proton isn’t scaled.
Similar trend with RHIC-PHENIX is observed by LHC-ALICE.
Strong magnetic field is thought to affect photon emit angle. It is created in perpendicular direction to Reaction Plane.
Quark annihilation effect

If \(n_{q,\gamma} = 2 \)

Late state photon production with q-q annihilation effect seems to work well.

2014/03/30
Measured temperature is shifted from real temperature due to flow effect.
Thermal photon v_2

Much smaller than PHENIX direct photon v_2.

$Au + Au @ \sqrt{s_{NN}} = 200 \text{ GeV}$
PHENIX detector

EMCal is used to detect photon. PC3 is used to remove charged particle.

Event Plane is measured by RxN detector.

CNT coverage $|\eta| < 0.35$

$\phi : 180$

- Tracking detector DC, PC1, PC2, PC3
- particle identification RICH, TOF, AGEL, EMCal
Check to be consistent with $\pi^{\pm} v_3$

$\pi^0 v_3$ is measured up to 4.0 GeV/c with several centralities. It is confirmed to be consistent with $\pi^{\pm} v_3$.

Decay photon v_n is simulated from π^0 and the other meson v_3.
Event are classified by these detectors.
Event Plane are measured by these detectors.

- BBC (3.1 < |\(\eta\)| < 3.8)
- MPC (3.1 < |\(\eta\)| < 3.8)
- RxN (1.0 < |\(\eta\)| < 2.8)
Event Plane calculation

Event Plane is calculated by three steps.
1. gain correction
2. re-centering
3. flattening

\[\nu_{n,\text{real}} = \nu_{n,\text{obs}} / \text{Res} \{ \Psi_n \} \]

- **2nd Event Plane correlation**
 - RxN(In)S&N
 - RxN(Out)S&N
 - RxN(In+Out)S&N

- **2nd Event Plane resolution**
 - RxN(In)S+N
 - RxN(Out)S+N
 - RxN(In+Out)S+N

Reaction Plane detector (RxN)
- Inner: \(1.5 < |\eta| < 2.8 \)
- Outer: \(1.0 < |\eta| < 1.5 \)
\[T_f \]

\[\rho_n \] behavior is similar to centrality dependence of charged particle \(v_n \).

\(s_3 \) and \(s_4 \) are smaller than \(s_2 \) but not zero in non-central.
It is estimated about 10^{17}[Gauss].

It related to photon production angle??