Recent measurements of azimuthal anisotropy vn in heavy ion collisions

Takahito Todoroki University of Tsukuba

KMI Mini-Workshop 2014 "Fluctuations, collectivity and correlations at RHIC and LHC" October 23, 2014, Nagoya, Japan

Outline

- Azimuthal anisotropy in p(d)+A collisions
- HBT measurements in p(d)+A collisions
- Event shape control study in A+A collisions

Initial Fluctuations

Alver et.al. PRC81.054905

Simplified Distribution

- Initial spatial anisotropy ⇒
 Momentum anisotropy
- Only second-order event-plane

Ev-by-Ev Fluctuating Distribution

T. Todoroki

(f) = (f) = (f) + (f)

3

Differential vn measurements

RHIC

 Substantial higher order flow harmonics vn is observed in both RHIC and LHC energy ranges

Ridge & vn in p+Pb collisions

 Ridge and v_{2,3} are observed in high multiplicity p+Pb collision events

Ridge and v₂ in d+Au collisions

- Peripheral subtraction at $0.48 < |\Delta\eta| < 0.7$
- None zero v_2 is observed in 0-5% d+Au collisions,
 - Similar p_T dependence of v_2 in 0-2% p+Pb collisions
 - Consistent with hydrodynamics calculations

Initial or Final State Effect?

- Both initial state (CGC) and final state (hydro) effects can explain vn in small collisions systems
- Need more constraints by differential measurements

Long-range rapidity correlations

- $_{\bullet}$ Muon Piston Calorimeter (MPC) : at $3{<}|\eta|{<}4$
- Rapidity separation of $|\Delta\eta|\!>\!2.75$ is achieved by measuring correlations between tracks ($\!|\eta|\!<\!0.35\!$) and MPC towers

Track-tower angular correlations

$$s(\Delta \phi) = \frac{d(\omega_{tower} N_{same}^{track-tower})}{d(\Delta \phi)}$$
:
$$\Delta \phi = \phi_{tower} - \phi_{track}$$

Track-Tower correlations in same events

*w*_{tower} : Transverse Energy of each tower (Proportional to multiplicity)

 $N_{same}^{track-tower}$: Number of Track-Tower Pairs in same events

 $M(\Delta \phi)$: Track-Tower correlations in mixed events

$$C(\Delta \phi) = \frac{S(\Delta \phi) \int M(\Delta \phi)}{M(\Delta \phi) \int S(\Delta \phi)}$$

: Correlation Function by Event Mixing

Correlations in p+p and 0-5% d+Au collisions

 Ridge is observed in 0-5% d+Au collisions, which is not observed in p+p collisions

3

4

-1 0 1 2

v2 with more rapidity gap

- EP method using MPC : MPC-CNT rapidity gap $|\Delta\eta|{>}2.75$
- Sizable v₂ observed across large rapidity gap

- Mass dependence in low p_T
- Baryon/Meson difference at intermediate p[⊤]
- Qualitatively consistent with hydrodynamics.

Non-flow effects in p+A collisions

T. Todoroki

Scaling among p+A and A+A vn

- Scaled vn in A+A collisions match that in p+A collisions
- Suggests similar origin of vn in both systems and similar medium response to initial geometry in both systems

Multi Particle Cumulants

- M.P.C is less sensitive to non-flow than 2-part. cum.
 - ~10% reduction of v_2 in both p+A and A+A collisions
- Convergence in v₂{n=4,6,8,LYZ} in p+A and A+A collisions
 - Consistent with hydrodynamics prediction
 Bzdak et.al. arXiv:1311.7325

Nagoya Mini-Workshop

T. Todoroki

HBT Methodology

LCMS Frame

Space momentum correlation

$$C_{2} = P(p_{1}, p_{2}) / \{P(p_{1})P(p_{2})\} \sim 1 + |\rho(q)|^{2}$$
$$= C_{2}^{core} + C_{2}^{halo}$$
$$= [\lambda(1+G)F_{coul}] + [1-\lambda]$$

$$G = \exp\left(-R_s^2 q_s^2 - R_o^2 q_o^2 - R_L^2 q_L^2 - 2R_{os}^2 q_o q_s\right)$$

 F_{COUI} : coulomb correction factor λ : fraction of pairs in the core

- s : (sideward) geometrical size
- o: (outward) geometry and time duration
- L : (longitudinal) beam direction
- os : outward-sideward cross term

Event selections of d+Au and Au +Au collisions for HBT Analysis

Nagoya Mini-Workshop

T. Todoroki

HBT correlation in d+Au & Au+Au

arXiv:1404.5291

π[±] π[±] HBT correlations
 measured at similar N_{part} & k_T

	N _{part}	<k<sub>7></k<sub>
Au+Au	16.7±1.1	0.39
d+Au	15.7±1.6	0.39

 HBT correlations in d+Au larger than those in Au+Au imply smaller HBT radii

- Qualitatively similar m_T dependence in d+Au & Au+Au
 - Similar expansion dynamics?
- Blast-wave fitting defined by expansion velocity & freezeout temperature works well for R_{side}

Nagoya Mini-Workshop

T. Todoroki

Emission duration & freeze-out volume

Rout/Rside~1

Short emission duration

Freeze-out Volume

v(dAu)<v(AuAu)

Similar m_T dependence

^{1/3} HBT radii as a function of N_{part}

arXiv:1404.5291

- d+Au & Au+Au HBT radii do not scale together but show a similar linearity
- p+p at 7 TeV also show a linearity with respect to <dN_{ch}/η>^{1/3}

Initial R dependence in p+A & A+A collisions

- Linearity and good scaling are seen in p+A and A+A collisions
- Implies possible radial expansion in p+A systems

Event-by-Event Fluctuations of vn

LHC Data

Hydro Calculation

- Eve-by-Eve fluctuation seems to be independent of shear-viscosity
- Possible probe to access IC

Event-Shape Engineering

• **|q**_n**|** : Strength of Flow

$$(q_n^x, q_n^y) = \frac{1}{\sum_i} \left(\sum_i \cos n\phi_i, \sum_i \cos n\phi_i\right)$$
$$|q_n| = q_n^{x^2} + q_n^{y^2}$$

Possible control of initial geometry

29

Nagoya Mini-Workshop

J.Jia et.al : arXiv:1403.6077

4000

(c) 0.640

0.6

0.4

₩ე

v_n(n=2,3,4,5) vs q₂

30

- q₂ dependence for v₂
- Weaker, but q₂
 dependence also for
 v_n(n=3,4,5)

vn(n=2,3,4,5) vs q₂

v₂ - v₃ correlations

- Negative-correlations between v_2 and v_3 $v_3 = c_0 + c_1 v_2$
- Linear response to initial geometry

$$v_2 e^{i2\Phi_2} = a_0 \epsilon_2 e^{i2\Phi_2^*} \qquad v_3 e^{i3\Phi_3} = a_0 \epsilon_3 e^{i3\Phi_3^*}$$

Anti correlations at initial eccentricities?

Nagoya Mini-Workshop

T. Todoroki

v₂ - v₄ correlations

- Linear-term and non-linear term
- Clear non-linear term is seen in data: upward bending

$$v_4 e^{i4\Phi_4} = a_0 \epsilon_4 e^{i4\Phi_4^*} + a_1 (\epsilon_2 e^{i2\Phi_2^*})^2 + \dots$$

= $c_0 e^{i4\Phi_4^*} + c_1 (v_2 e^{i2\Phi_2^*})^2 + \dots$ $v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$

Nagoya Mini-Workshop

T. Todoroki

V2-Vn correlations

- \bullet Compared with Glauber and MC_KLN $\epsilon_2 \text{-} \epsilon_n$ correlations
- Access to IC if a unique hydro response to a given initial correlation

Linear/non-Linear terms

- Most-central : v₄ is almost independent of v₂
- NL term increases with centrality
- Similar trends in v₅

Viscous dumping

Viscous dumping of vn with "n"

Acoustic viscous dumping

 $\delta T_{\mu\nu}(n,t) = \exp(-\beta' n^2) \delta T_{\mu\nu}(n,0), \quad \beta' = \frac{2\eta}{3s} \frac{1}{\bar{R}^2} \frac{t}{T},$

Lacey et.al. 1105.3782, Staig et. al. PRC84.034908

 Dumping pattern may be determine by the data

Twist Effect

Jia et. al. arXiv:1403.6077

- Twisted medium between forward and backward directions emerging from participant fluctuations
- Correlation length of initial fluctuations in rapidity directions
- Possible underestimate of vn i.e. overestimate of shear-viscosity due to neglecting decorrelated term

AMPT : Twist Effect

AMPT : Twist Effect

- $\begin{array}{c} \underset{\scriptstyle \text{O}_{0.05}}{\overset{\scriptstyle \text{O}_{0.05}}{2}} \quad \underbrace{\text{Event Selection}}_{\scriptstyle \text{O}_{0.03}} \\ 2\left(\underbrace{\Psi_2^F}_2 \Psi_2^B \right) > 0.5_{\mathbb{S}^{\circ}0.02} \quad \varepsilon_2^{\text{back}} < \varepsilon_2^{\text{for.}} \\ 3\left(\Psi_3^F \Psi_3^{B^{\circ}} \right)_{\text{Iang}} > 1.5^{\circ.01} \quad \varepsilon_3^{\text{back}} < \varepsilon_3^{\text{for.}} \\ \overset{\scriptstyle \text{O}_{0.02}}{3} \left(\underbrace{\Psi_n^F}_n \right) = \left\langle \cos n(\phi \Psi_n^{s^{\circ}}) \right\rangle / Res \left\{ n\Psi_n \right\} \\ v_n^{\mathfrak{G}^{\circ}} = \left\langle \sin n(\phi \mathfrak{F}_n^{\circ.005}) \right\rangle \left\langle Res \left\{ n\Psi_n \right\} \\ v_n^{\mathfrak{G}^{\circ}} = \left\langle \sin n(\phi \mathfrak{F}_n^{\circ.005}) \right\rangle \left\langle Res \left\{ n\Psi_n \right\} \\ \end{array} \right\} \end{array}$
- Twisted term vn^s observed
 i.e. underestimate of vn
- This study should be done for experimental data

Summary

- Similar trends among p(d)+A and A+A collisions in vn and HBT measurements
 - Observables in p(d)+A collisions are qualitatively consistent with final state effects
 - Hadron mass dependence of CGC?
- Event Shape Control Study is a promising method to address initial geometry of heavy ion collisions
 - Possible access to initial state model

Auxiliary Slides

Scaling in HBT

T. Todoroki

v₄-v₂ correlations : comparison to EP correlations

16

The non-linear & linear components from EP correlations are obtained as:

$$v_4^{\text{NL}} = v_4 \langle \cos 4(\Phi_2 - \Phi_4) \rangle, \quad v_4^{\text{L}} = \sqrt{v_4^2 - (v_4^{\text{NL}})^2}$$

- The results from the two procedures compare quite well
- In most central cases almost all v₄ is uncorrelated with v₂
- Correlated component gradually increases and overtakes linear component as N_{part}~120

v₅-v₂ correlations : comparison to EP correlations

- Compare linear & non-linear components from this analysis to EP correlation results
- The non-linear & linear components from EP correlations are obtained as:

$$v_5^{\text{NL}} = v_5 \left\langle \cos(2\Phi_2 + 3\Phi_3 - 5\Phi_5) \right\rangle, \quad v_5^{\text{L}} = \sqrt{v_5^2 - (v_5^{\text{NL}})^2}$$