Measurements of Two-Particle Correlations with respect to Higher-Order Event-Planes in $\sqrt{s_{NN}}$ = 200 GeV Au+Au Collisions at RHIC-PHENIX

Takahito Todoroki (a presentation of thesis results)

University of Tsukuba todoroki@rcf.rhic.bnl.gov

Motivation

Two-particle correlations are considered to be sensitive to the interaction of hard-scattered partons with the hot and dense medium. Monotonic suppression of high-p_T correlation yield with increase of parton path length inside the medium is observed by selecting trigger particles with respect to the second-order event-planes using its ellipticity [1]. The next interest is the destination of the deposited energy from the high- p_T partons. The key to catch the deposited energy is p_T scanning measurement of the event-plane dependent correlations down to low-p_T with a background subtraction of higher-order flow harmonics v_n [2]. Third-order event-plane (triangular) dependent correlations are also of interest to search for possible different parton behavior from that in second-order geometry.

★ Event-Planes determined by Reaction Plane Detector (RXN) & Beam Beam Counter (BBC)

 \star Charged hadron v_n at $\eta < 0.35$ measured by EP Method

Used for background subtraction in correlation analysis

Trigger range divided into 8 bins in EP Away-Side single peak of dependent correlations. RXN is used for trigger categorization Au+Au √s_{NN}=200 GeV, 20-30% p_T^t⊗p_T^a=2-4⊗1-2 GeV/c : C₂ Expr. Fit to Expr. C ure Flow (ZYAM) hesis Results $^4\Delta\phi$ Au+Au $\sqrt{s_{NN}}$ =200GeV, Pure Flow : v_(n=2,3,4) + <cos4(Ψ_2 - Ψ_4)> 10-20% \longrightarrow Cor : $\phi_t \cdot \Psi_n < 0$ (a) \longrightarrow Cor : $\phi \cdot \Psi_n > 0$ Pure Flow : $\phi_t \cdot \Psi_n < 0$ (b) $\phi = Pure Flow : \phi \cdot \Psi_n > 0$.06 Thesis Results (C)

high-p_T correlations in midcentral collisions Away-Side double humps in mid-central collisions even after v_n subtractions **EP** Dependent Correlations In-Plane/Out-of-Plane dependence is **not** observed in Ψ_3 dependent correlation Au+Au 200GeV In-Plane/Out-Of-**Pipendence**endence is observed in Ψ_2 dependent correlations 2-4 ⊗2-4GeV/c Away-Side Yield δf^{0} $\Psi Plane \Psi_2$ dependent correlations (Longer Path Length) has an that of In-Plane coare stice to the stice of the state of the sta Length) for \mathbb{R}^{3} : 2-4x 1-2 GeV/C but not for othes high-pt and selections 2-4 ⊗2-4GeV/c Re-distribution of deposited energy from high pT parton's to the medium is $\stackrel{\text{(1)}}{\rightarrow} 0.9^{2}_{-1} \stackrel{\Phi_{3}:\text{Out-ot-plane}}{12} \stackrel{\Phi_{3}:\Phi_{1}}{12} \stackrel{\Phi_{3}:\text{II-plane}}{12} \stackrel{\Phi_{3}:\text{II-plane}}$ ψ^{-1}_{2} [iau] one of hypotheses 0.6 Strong ter Pat PPt 49% gth Long er 20-30%

0.6Shorter Pathe Bright Longer

Unfolding of EP resolution for PTY

- Degree of smearing by neighboring trigger bins in PTY "S" can be estimated by relative distribution between true and observed EP using an analytical formula [3]
- Solve simultaneous equations among resolution corrected/uncorrected (observed) PTY "Y"

 $\mathbf{Y^{uncor}} = \mathbf{SY^{cor}}$

 $\Delta \phi = \phi^{a} - \phi^{t} [rad]$

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 $\phi^a\text{-}\Psi_2$ [rad] Conclusion Two-particle correlations are measured with vn background subtractions with respect to second and third-order event-planes, in Aud Aud son = 200 GeV collisions. 2 0 In-Plane/Out-of-Plane defined and a losserved if but not for Ψ_3 dependent correlations \checkmark Enhancement of Away-Side Yield of most-central Ψ_2 dependent correlations in Out-of-Plane larger than in In-Plane can be taken as possible re-distribution of deposited energy from high p_T partons to the hot and dense medium

;**≍** 0.4

References

[1] A. Adare et. al. (PHENIX Collaboration), PRC 84, 024904 (2011) [2] A. Adare et. al. (PHENIX Collaboration), PRL 107, 252301 (2011) [3] J. Y. Ollitrault PRD 48, 1132 (1993)