# Azimuthal Angle Dependence of HBT Interferometry with respect to Event Planes in Au+Au collisions at PHENIX Takafumi Niida<sup>#</sup> for the PHENIX Collaboration 说说文学 *iniida@bnl.gov*

### Introduction

Higher order flow anisotropies  $(v_n)$  are considered to be originated from initial geometrical fluctuation of participating nucleons followed by the collective expansion of the hot and dense medium created in a heavy ion collision.

The higher order final spatial anisotropies  $(\varepsilon_n)$  can be accessible by Hanbury Brown and Twiss (HBT) interferometry with respect to higher order event planes  $(\Psi_n)$ , which reflects the geometrical size and shape at kinetic freeze-out.

This measurement provides detailed information on the system evolution, and could be also a unique probe to the initial-state fluctuation.



### Analysis Method

Event planes determined by Reaction Plane Detector
PID based on time-of-flight from collision vertex to Electromagnetic Calorimeter



## HBT radii w.r.t 2<sup>nd</sup>/3<sup>rd</sup>-order Event Planes



#### Fitting function

 $C_{2} = C_{2}^{core} + C_{2}^{halo}$   $= [\lambda(1+G)F_{c}] + [1-\lambda] \qquad G = \exp(-R_{s}^{2}q_{s}^{2} - R_{o}^{2}q_{o}^{2} - R_{l}^{2}q_{l}^{2} - 2R_{os}^{2}q_{o}q_{s})$ 

 $\vec{k}_T = rac{1}{2}(\vec{p}_{T1} + \vec{p}_{T2})$ 

 ✓ Fitting function based on "Core-halo" picture to take into account the long-lived resonance decays
✓ 3D-analysis with "Out-Side-Long" system
✓ Including Coulomb repulsive effect

Azimuthal angle dependence of HBT radii ( $R_{\mu}$ ) was measured w.r.t  $\Psi_2$  and  $\Psi_3$ .

### Particle Species Dependence



For 3rd-order dependence, comparison with two calculations: ✓ Gaussian source model<sup>2)</sup> ✓ Monte-Carlo simulation<sup>1)</sup>

Qualitatively consistent with the case of finite triangular flow without spatial deformation !! Possible indication of reversed triangular spatial anisotropy<sup>1)</sup> in 20-60% ✓ Oscillation driven by triangular flow (see below)



## **Conclusion & Outlook**

PHENIX has performed a first measurement of HBT w.r.t 3<sup>rd</sup>-order event plane
Source eccentricity is diluted due to medium expansion but still retain initial shape, while triangularity seems to vanish at kinetic freeze-out
Charged kaon HBT shows similar but slight different trends to charged pions with possible indication of different freeze-out mechanism

<u>Toward event-by-event study with event shape engineering<sup>4)</sup></u>

### $\checkmark$ Visible differences of R\_o and R\_I in central collisions

 $\checkmark$  The difference decreases with centrality  $\checkmark$   $\Psi_2$  dependence was observed as well as  $\pi$ 

#### <u>Possible indication/interpretation</u>

 $\checkmark$  Similar trend to hydrokinetic model<sup>3)</sup>

- –Breaking of  $m_T$  scaling for  $R_I$  may be explained by strong transverse flow
- ✓ Blast-wave model study suggests faster freeze-out  $\frac{2}{3}$ but longer emission duration of K compared to  $\pi$ (Thesis result)
- ✓ Need realistic model study to justify the scenario



HBT effect

Detector

✓ Larger/smaller flow vector ->larger/smaller  $v_2$  event (->control initial  $\epsilon_2$ ?) ✓ How about final  $\epsilon_2$  possibly controlling initial shape?

- More elliptic initial source leads to more elliptic final source? Larger v2 effect?



 $\checkmark$  Could select large  $\epsilon_3$  event with small  $\epsilon_2$ , maybe applicable for U+U and Cu+Au



A. Adare *et al.* (PHENIX Collaboration), Phys. Rev. Lett. **112**, 222301 (2014)
C. J. Plumberg, C. Shen and U. Heinz, Phys. Rev. C**88**, 044914 (2013)
I. A. Karpenko and Y. M. Sinyukov, Phys. Rev C**81**, 054903 (2010)
J. Schukraft, A. Timmins and S. A. Voloshin, Phys. Lett. B**719**, 394 (2013)