Azimuthal angle dependence of HBT radii with respect to the Event Plane in Au+Au collisions at PHENIX

Takafumi Niida for the PHENIX Collaboration University of Tsukuba

WWND2014 @Galveston, USA

Space-Time evolution in HI collisions

- Final emitting particles carry information on the properties of the QGP and its space-time evolution
- Space-time picture of the system evolution is emerging from recent studies at RHIC and the LHC

Momentum anisotropy at final state

- Initial source eccentricity with fluctuations leads to momentum anisotropy at final state, known as higher harmonic flow v_n
 - \diamond Sensitive to η /s (PRL107.252301)

$$\frac{dN}{d\phi} \propto 1 + 2\Sigma v_n \cos[n(\phi - \Psi_n)]$$
$$v_n = \langle \cos[n(\phi - \Psi_n)] \rangle$$

 Ψ_n : higher harmonic event plane

φ : azimuthal angle of emitted particles

Spatial anisotropy at final state

- What is the final source shape?
 - ♦ Spatial-extent at final state depends on the magnitude of initial eccentricity with fluctuation, the strength of flow, expansion time, and viscosity
 - Does the initial fluctuation also remain at final state?
- HBT interferometry relative to different event plane could probe them.

HBT Interferometry

- 1956, H. Brown and R. Twiss, measured angular diameter of Sirius
- 1960, Goldhaber et al., correlation among identical pions in p+p
- By quantum interference between two identical particles

wave function for 2 bosons(fermions) :
$$\Psi_{12}=\frac{1}{\sqrt{2}}[\Psi(x_1,p_1)\Psi(x_2,p_2)\pm\Psi(x_2,p_1)\Psi(x_1,p_2)]$$

$$C_2 = \frac{P(p_1, p_2)}{P(p_1)P(p_2)} \approx 1 + |\tilde{\rho}(q)|^2 = 1 + \exp(-R^2 q^2)$$

HBT Interferometry

- 1956, H. Brown and R. Twiss, measured angular diameter of Sirius
- 1960, Goldhaber et al., correlation among identical pions in p+p
- By quantum interference between two identical particles

wave function for 2 bosons(fermions) :
$$\Psi_{12}=\frac{1}{\sqrt{2}}[\Psi(x_1,p_1)\Psi(x_2,p_2)\pm\Psi(x_2,p_1)\Psi(x_1,p_2)]$$

$$C_2 = \frac{P(p_1, p_2)}{P(p_1)P(p_2)} \approx 1 + |\tilde{\rho}(q)|^2 = 1 + \exp(-R^2 q^2)$$

Azimuthal sensitive HBT w.r.t 2nd-order event plane

PRC70, 044907 (2004), Blast-wave model

$$R_{s,n}^{2} = \left\langle R_{s,n}^{2}(\Delta\phi)\cos(n\Delta\phi) \right\rangle$$

$$\varepsilon_{final} = 2\frac{R_{s,2}^{2}}{R_{s,0}^{2}}$$

R_{s,2} is sensitive to final eccentricity

 Φ (radians)

Oscillation indicates elliptical shape extended to out-of-plane direction.

Results of HBT w.r.t 2nd- and 3rd-order event planes are presented today!

Event Plane Determination

beam axis

Determined by anisotropic flow itself using Reaction Plane Detector

$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{\sum w_i \cos(n\phi_i)}{\sum w_i \sin(n\phi_i)} \right)$$

EP resolutions $<\cos[n(\Psi_n-\Psi_{real})]>$

♦ Res{ Ψ_2 } ~ 0.75, Res{ Ψ_3 } ~ 0.34

Particle | Dentification

- EMC-PbSc is used.
- Time-Of-Flight method

$$m^2 = p^2 \left(\left(\frac{ct}{L} \right)^2 - 1 \right)$$

p: momentum L: flight path length t: time of flight

- Charged π within 2σ

Particle Identification by PbSc-EMC

Momentum × charge

3D-HBT Analysis

- Core-Halo picture with "Out-Side-Long" frame
 - \diamond Longitudinal center of mass system (p_{z1}=p_{z2})

$$C_2 = C_2^{core} + C_2^{halo}$$
$$= [\lambda(1+G)F_{coul}] + [1-\lambda]$$

$$G = \exp(-R_s^2 q_s^2 - R_o^2 q_o^2 - R_l^2 q_l^2 - 2R_{os}^2 q_s q_o)$$

beam

F_{coul}: Coulomb correction factor

λ : fraction of pairs in the core

R_I = Longitudinal Gaussian source size

R_s = Transverse Gaussian source size

 R_0 = Transverse Gaussian source size + $\Delta \tau$

R_{os}= Cross term b/w side- and outward drections

RESULTS

HBT radii w.r.t 2nd- and 3rd-order event planes

- Oscillation w.r.t $Ψ_2$ could be intuitively explained by out-of-plane extended elliptical source
 - ♦ Opposite sign of R_s and R_o
- For Ψ₃, weak but finite oscillations can be seen, especially in R_o
 - ♦ Same sign of R_s and R_o in 20-30% centrality
- R_o oscillation > R_s oscillation for both orders

Initial ε_n vs oscillation amplitudes

2nd-order

- ♦2R_{s,2}²/R_{s,0}² ~ final source eccentricity under the BW model, and consistent with STAR result
- $ightharpoonup \epsilon_{final} \approx \epsilon_{inital}/2$, source eccentricity is reduced, but still retain initial shape extended out-of-plane

■ 3rd-order

- ♦ Weaker oscillation and no significant centrality(ε_n) dependence
- $R_{s,3}^2 \le 0$ and $R_{o,3}^2 \ge 0$ are seen in all centralities.
- Does this result indicate non spatial triangularity at final state?

Triangular deformation can be observed via HBT?

- HBT radii w.r.t Ψ₃ don't almost show oscillation in a static source, but it appears in a expanding source. (S. Voloshin, J. Phys. G38, 124097)
- Initial triangularity is weaker than initial eccentricity (Glauber MC)
 - ♦ Effect of triangular flow may be dominant for the emission region

w/ radial flow

<u>w/ radial</u> + triangular flow

Triangular deformation can be observed via HBT?

- HBT radii w.r.t Ψ₃ don't almost show oscillation in a static source, but it appears in a expanding source. (S. Voloshin, J. Phys. G38, 124097)
- Initial triangularity is weaker than initial eccentricity (Glauber MC)
 - ♦ Effect of triangular flow may be dominant for the emission region

w/ radial flow

<u>w/ radial</u> ___+ triangular flow

Triangular deformation can be observed via HBT?

- HBT radii w.r.t Ψ₃ don't almost show oscillation in a static source, but it appears in a expanding source. (S. Voloshin, J. Phys. G38, 124097)
- Initial triangularity is weaker than initial eccentricity (Glauber MC)
 - ♦ Effect of triangular flow may be dominant for the emission region

: emission region

$$R_s(\Delta \phi = 0) = R_s(\Delta \phi = \pi/3)$$

w/ radial flow

<u>w/ radial</u> + triangular flow

- **HBT** w.r.t Ψ_3 (also Ψ_2) results from combination of spatial and flow anisotropy
 - ♦ Need to disentangle both contributions!!

Gaussian toy model

Gaussian source including 3rd-order modulation for flow and geometry

 $\diamond \overline{\epsilon}_3$: triangular spatial deformation

 $\diamond v_3$: triangular flow deformation

Emission function(S) and transverse flow rapidity
$$\eta_{\rm t}$$
:
$$\tilde{S}(x,K) \propto \exp[-\frac{r^2}{2R^2}(1+2\bar{\epsilon}_3\cos[3(\phi-\bar{\psi}_3)])]$$

$$\eta_t = \eta_f \frac{r}{R} (1 + 2\bar{v}_3 \cos[3(\phi - \bar{\psi}_3)])$$

deformed flow

$$\bar{\epsilon}_3 = 0, \bar{v}_3 \neq 0$$

deformed geometry

$$\bar{\epsilon}_3 \neq 0, \bar{v}_3 = 0$$

Two extreme case was tested

- ♦Spherical source with triangular flow(+radial flow)
- →Triangularly deformed source with radial flow
- "Deformed flow" shows qualitative agreement with data

Monte-Carlo simulation

- Similar to Blast-wave model but Monte-Carlo approach
 - ♦ thermal motion + transverse boost (PRC70.044907)
 - ♦ introduced spatial anisotropy and triangular flow at freeze-out

Setup

♦ Woods-saxon particle distribution:

$$\Omega = 1/(1 + \exp[(r - R)/a]), R = R_0(1 - 2e_3\cos[3(\phi - \Phi)])$$

- ♦ transverse flow: $\beta_T = \beta_0 (1 + 2 \beta_3 \cos[3(\phi \Psi)])$
- ♦ HBT correlation: $1 + \cos(\Delta x \cdot \Delta p)$

- ♦ parameters like T_f (temperature), $β_0$, R_0 were tuned by spectra and mean HBT radii
- XAssuming the spatial and momentum dist. at freeze-out

Oscillations of R_s^2 and R_o^2 are controlled by e_3 and $β_3$

k_T dependence of 3rd-order oscillation amplitude

- $R_{0,3}^2$ seems to be explained by "deformed flow" in both centralities.
 - ♦ Note that model curves are scaled by 0.3 for the comparison with the data
- $Arr R_{s,3}^2$ seems to show a slight opposite trend to "deformed flow".
 - ♦Zero~negative value at low m_T, and goes up to positive value at higher m_T

k_T dependence of 3rd-order oscillation amplitude

- R_{0.3}² seems to be explained by "deformed flow" in both centralities.
 - ♦ Note that model curves are scaled by 0.3 for the comparison with the data
- $Arr R_{s,3}^2$ seems to show a slight opposite trend to "deformed flow".
 - ♦Zero~negative value at low k_T, and goes up to positive value at higher k_T

Constrain spatial(e_3) and flow(β_3) anisotropy

- MC simulation are compared to data varying e₃ and β₃
- **2 minimization:** $\chi^2 = (([R_{\mu,3}^2/R_{\mu,0}^2]^{\exp} [R_{\mu,3}^2/R_{\mu,0}^2]^{\sin})/E)^2$ where E is experimental uncert.. Shaded areas show $\chi^2 < 1$.

- \triangleright e₃ is well constrained by R_s, less sensitivity to β_3
- \triangleright Overlap of R_s and R_o shows positive β₃ and zero e₃ in 0-10%
- R_s seems to favor negative e₃ in 20-30%
 - Triangular deformation is reversed at freeze-out?

Time evolution of spatial anisotropy

- MC-KLN + e-b-e Hydrodynamics
 - ♦15-20%, Parameters are not tuned.

IC with cumulant expansion+ ideal Hydrodynamics

- \triangleright The time that ε_3 turns over is faster than ε_2 in the hydrodynamic models.
- Comparison with (e-b-e) full hydrodynamics may constrain the space-time picture of the system.

Summary

- Azimuthal angle dependence of HBT radii w.r.t 2nd- and 3rd-order event planes was measured at PHENIX
 - ♦ Finite oscillation of R_o² is seen for 3rd-order event plane as well as 2nd-order.
 - ♦ Gaussian toy model and MC simulation were compared with data.
 They suggest that R_o oscillation comes from triangular flow.
 - $\uparrow \chi^2$ minimization by MC simulation shows finite β_3 and zero \sim slightly negative e_3 , which may imply that initial triangular shape is significantly diluted, and possibly reversed by the medium expansion

THANK YOU!

Higher Harmonic Flow and Event Plane

- Initial density fluctuations cause higher harmonic flow v_n
- Azimuthal distribution of emitted particles:

fluctuating picture

$$\frac{dN}{d\phi} \propto 1 + 2v_2 \cos 2(\phi - \Psi_2)$$

$$+2v_3 \cos 3(\phi - \Psi_3)$$

$$+2v_4 \cos 4(\phi - \Psi_4)$$

$$v_n = \langle \cos n(\phi - \Psi_n) \rangle$$

v_n: strength of higher harmonic flow

 Ψ_n : higher harmonic event plane

φ : azimuthal angle of emitted particles

Correlation Function

Experimental Correlation Function C₂ is defined as:

- → R(q): Real pairs at the same event.
- ♦ M(q): Mixed pairs selected from different events.

Event mixing was performed using events with similar z-vertex, centrality, E.P.

$$C_2 = \frac{R(\mathbf{q})}{M(\mathbf{q})}$$
$$\mathbf{q} = \mathbf{p_1} - \mathbf{p_2}$$

Real pairs include HBT effects, Coulomb interaction and detector inefficient effect. Mixed pairs doesn't include HBT and Coulomb effects.

Spatial anisotropy at final state

- Angle dependence of HBT radii relative to Reaction Plane reflects the source shape at kinetic freeze-out.
- Initial spatial anisotropy causes momentum anisotropy (flow anisotropy)
 - ♦One may expect in-plane extended source at freeze-out
- Final source eccentricity will depend on initial eccentricity, flow profile, expansion time, and viscosity etc.

Correction of Event Plane Resolution

Smearing effect by finite resolution of the event plane

- **Correction for q-distribution** $A_{crr}(q, \Phi_j) = A_{uncrr}(q, \Phi_j)$
 - ♦PRC.66, 044903(2002)
 - ✓ model-independent correction
 - ♦ Checked by MC-simulation

event plane resolution

Centrality dependence of v_n and initial ε_n

- Weak centrality dependence of v₃ unlike v₂
- Initial ε_3 has finite values and weaker centrality dependence than ε_2 in Glauber MC simulation
- Triangular component in source shape exists at final state?
 →Measurement of HBT radii relative to Ψ₃

Track Reconstruction

Drift Chamber

♦ Momentum determination

$$p_T \simeq rac{K}{lpha}$$
 K: field integral $lpha$: incident angle

- Pad Chamber (PC1)
 - Associate DC tracks with hit positions on PC1
 - √ p₇ is determined
- Outer detectors (PC3,TOF,EMCal)
 - ♦ Extend the tracks to outer detectors