Elliptic flow for multi-strange hadrons as penetrating probes at RHIC

Hiroshi Masui / University of Tsukuba

High Energy Strong Interactions: A school for Young Asian Scientists, Wuhan, Sep. 22-26, 2014
Outline

- Introductions
 - Elliptic flow
 - Why multi-strange hadrons?
- Latest STAR results in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV
 - Number of constituent quark (NCQ) scaling
 - Violation of mass ordering between ϕ meson and proton
- Hybrid hydrodynamical model calculations
- Summary

I would like to thank Shiori Takeuchi and Tetsufumi Hirano for allowing me to present their recent hydrodynamical model calculations
Azimuthal anisotropy

\[
\frac{dN}{d\phi} \sim 1 + 2v_1 \cos (\phi - \Psi_1) + 2v_2 \cos (2[\phi - \Psi_2]) + 2v_3 \cos (3[\phi - \Psi_3]) + \cdots,
\]

\[
v_2 = \langle \cos (2[\phi - \Psi_2]) \rangle
\]

- **Azimuthal anisotropy**
 - Fourier expansion of azimuthal distribution with respect to the reaction plane
 - Fluctuation of constituents (nucleons or partons) → participant plane
 - Reaction plane ≠ participant plane
- **Elliptic flow - \(v_2\)**
 - Final state momentum anisotropy, 2nd harmonic coefficient
 - not necessary to describe collective hydrodynamic flow
 - 2 particle correlation is the most popular method

\[
v_{2}^{\text{obs}} = \langle \cos (2\phi - 2\phi_r) \rangle = v_2 \cdot \langle \cos (2\phi_r - 2\Psi_2) \rangle
\]

\[
v_{2}^{\text{obs}} = \langle \cos (2\phi - 2\Phi_2) \rangle = v_2 \cdot \langle \cos (2\Phi_2 - 2\Psi_2) \rangle
\]

\(v_{2}^{\text{obs}}\) is the observed elliptic flow, \(v_2\) is the second harmonic coefficient, and \(\Phi_2\) is the event plane resolution.
Mass ordering of v_2 - radial flow

$T_{\text{eff}} = T_{\text{fo}} + m_0 \langle \beta_T \rangle^2$

- Radial flow pushes heavier hadrons to higher p_T
 - Inverse slope (T_{eff}) of p_T spectra depends on mass linearly
 - Due to the geometry deformation, hadrons around participant plane are pushed more than those around out-of-plane
 - v_2 decreases at low p_T, and the effect is stronger for heavier hadrons
 - Mass ordering of v_2
Why multi-strange hadrons?

- Blast-wave model fit for p_T spectra support early freeze-out of multi-strange hadrons: $T_{fo} \sim T_{ch}$
 - probe to collectivity in early partonic stage of heavy ion collisions
- Statistics is limited in previous data to study the number of constituent quark (NCQ) scaling
Motivations

• v_2 for multi-strange hadrons is a good probe to partonic collectivity
 ‣ Multi-strange hadrons freeze-out earlier than others
 ➡ less hadronic rescattering (less radial flow effect)
 ➡ penetrating probe to study partonic stage
 ‣ Powerful tool to study NCQ scaling of v_2
 ‣ We can also study the effect of hadronic rescattering on v_2 by comparing ϕ meson with proton

• Statistics is limited in previous data set
 ‣ We have huge amount of data in year 2010 & 2011
 ‣ In addition, particle identification will be improved with fully installed MRPC-TOF detector
STAR experiment

- Large acceptance at midrapidity
 - Full azimuth, $|\eta| < 1$
- Excellent particle identification
 - TPC + TOF
Particle identifications

- Topological reconstruction of Ξ and Ω weak decay
 - reduce combinatorial backgrounds
- Calculate invariant mass
 - Combinatorial background is estimated by rotational background from the same event
● Clear centrality dependence - initial geometry
● Similar p_T dependence with light hadrons

- Event plane method with $\Delta \eta = 0.1$ gap
- Improve statistical error ϕ for meson
 - compare with left figure
- 2 centrality bins for Ω baryon
Transverse kinetic energy scaling

- Mass ordering is almost vanished in terms of transverse kinetic energy $m_T - m_0$
- Clear baryon and meson splitting above 1-2 GeV/c^2
- Multi-strange hadrons seem to be smaller than other hadrons in 30-80%
NCQ scaling for multi-strange hadrons

- Measure deviation relative to K^0_s
 - deviation at 30-80% is larger than 0-30%?
Mass ordering violation, prediction

MASS ORDERING OF DIFFERENTIAL ELLIPTIC FLOW . . .

at chemical freeze-out

hydro. + JAM

hydro. only

FIG. 9. (Color online) Transverse-momentum dependence of the elliptic flow parameters for pions (dotted blue), protons (dashed green), and \(\phi \) mesons (solid red), for Au+Au collisions at \(b = 7.2 \) fm. (a) Before hadronic rescattering. (b) After hadronic rescattering. (c) Ideal hydrodynamics with \(T_{\text{th}} = 100 \) MeV. The results for pions and protons are the same as shown in Fig. 5.

- **Prediction:** \(v_2(\phi) > v_2(p) \) at low \(p_T \)
 - Due to less hadronic rescattering on \(\phi \) meson
 - based on ideal hydrodynamical model + JAM hadronic cascade, single shot hydro (**no initial fluctuations**), ideal gas equation of state
v_2 at low p_T

- $v_2(\phi) > v_2(p)$ in data at low p_T
 - The effect is stronger in central collisions
- Consistent with the scenario predicted in hydro. + hadron cascade model
- Systematic & quantitative comparison is necessary
Recent update of hydro. model

S. Takeuchi,
ATHIC 2014

- Integrated dynamical model - hydro. + hadron cascade
 - Initial geometry fluctuation by MC Glauber model
 - Lattice equation of state
- Spectra are reproduced well at low p_T
\(v_2(p_T) \)

- Compared with previous published STAR data
- Reasonable agreement with the data
- Some deviations at peripheral collisions
 - due to the difference between event plane method (data) and reaction plane method (model)
Effect of hadronic rescattering

- Less rescattering effect on multi-strange hadrons
 - Mean p_T for multi-strange hadrons deviate from m_T scaling
 - v_2 almost unchanged between fluid and final stages
\[v_2(\phi) \text{ vs } v_2(p) \]

- **Compare** \(v_2 \) below \(\sim 1 \text{ GeV/c} \) in \(p_T \):
 - \(v_2(\pi) > v_2(p) \geq v_2(\phi) \) without rescattering
 - \(v_2(\pi) > v_2(\phi) > v_2(p) \) with rescattering

- **Confirmed violation of mass ordering**
 - \(\sim 20\% \) effect around 0.5 GeV/c in minimum bias events
Summary

- Multi-strange hadrons can be used as penetrating probes to understand medium properties in heavy ion collisions
- We have confirmed NCQ scaling for multi-strange hadrons with high precision data set
 - partonic collectivity for light quark sectors (u, d, s)
- Violation of mass ordering has been predicted, and observed by the comparison of ϕ meson and proton v_2
 - The effect is stronger in central collisions
- Recent hybrid hydrodynamical model provides realistic (initial state fluctuations + lattice EoS) calculation
 - which will allow us to make quantitative and systematic comparison with the data