The Measuring of Direct Photon Azimuthal Anisotropy In Au+Au 200GeV Collisions at RHIC-PHENIX

Sanshiro Mizuno for the PHENIX collaboration University of Tsukuba, RIKEN

mail to : s1230082@u.tsukuba.ac.jp

What is direct photon?

Direct photons are all photons except those originating from hadron decay. They penetrate the medium without the interaction. It is challenging to identify photon sources.

by p_T distribution? emitting angle?

2015/03/13

Direct photon p_T spectra

> The excess of p_T spectra is fitted and effective temperature is extracted. (Freeze-out temperature of hadrons are about 100MeV)

Centrality	Effective temperature
0% - 20%	239 ± 25 ± 7 (MeV)
20% - 40%	260 ± 33 ± 8 (MeV)
40% - 60%	225 ± 28 ± 6 (MeV)

Photons in low p_T are mainly radiated from very hot medium at early time of collisions.

2015/03/13

Elliptic flow of direct photon

2015/03/13

P.R.L. 109, 122302(2012)

It could be because photons produced in the initial hard scattering are dominant plus no interaction of photon in QGP ($R_{\Delta\Delta} \approx 1$). Low p_{T} : Comparable to hadron v_{2} at around 2 GeV/c

It is suggested that photons are emitted from late stage.

Direct photon puzzle

Thermal radiation photons are dominant in low p_{T} region.

p_T spectra :
 Emitted from very hot medium (T_{eff} ≈ 240MeV).
 -> Photons are dominantly emitted at early stage.

Elliptic flow : It was expected that photon has small v_2 , since it includes ones from early stage having small v_2 .

-> Photons are dominantly emitted at late stage.

There is a discrepancy, and it is called "direct photon puzzle". There is no models to explain both observables simultaneously.

The higher order flow is originating from the fluctuation of the shape of participant zone. It is expected to constrain the initial geometry calculating model and η /s of QGP.

2015/03/13

Direct photon (M.Sanshiro)

0.1

0.05

2 3

2

p_⊤(GeV/c

6

0

2015/03/13

The comparison of neutral pion and direct photon v_n

• In high p_T region

Direct photon v_n is close to zero.

It is consistent with the expectation that prompt photons having $v_n \approx 0$ are dominant. ($R_{\Delta\Delta} \approx 0$)

• In low p_T region

Direct photon has non-zero and positive v_2 and v_3 .

2015/03/13

Centrality dependence of $\gamma^{\text{dir.}}$ and $\pi^0 v_n$ in low p_T

Strong dependence for v_2 : weak dependence for v_3

It could be suggested that photon v_n is created by the expansion of the medium from the initial geometry.

2015/03/13

Blast wave model prediction for photon observables

Based on hydrodynamic model.

Hadron observables in low p_{τ} region are well described by the

PIDed Hadron v₂

2

3

parameters when kinetic freeze-out.

6 parameters

- Kinetic freeze-out temperature : T_f
- Average transverse rapidity : $< \rho >$
- Rapidity anisotropy : ρ_2 , ρ_3

PIDed Hadron p_{T} spectra

T_f=104.48±0.57[MeV

 $\langle \rho \rangle = 0.661 \pm 0.004$

Spatial density anisotropy : s_2 , s_3

Centrality:0-20%

• π[±] × 10

 $K^{\pm} \times 5$ $p\overline{p} \times 1$

p_{_}(GeV/c)

<

0.15

0.1

0.05

2015/03/13

10⁻⁴

10⁻⁶

Photon observables predicted by blast wave model

The photon p_T spectra and v_n are predicted as a massless particle.

The p_T spectra predicted with T_f=104 MeV & < ρ >=0.66 and T_f=240 MeV & < ρ >=0 are similar. It could be due to blue shift correction. The v_n with < ρ >=0 is zero.

2015/03/13

Summary

Direct photon azimuthal anisotropy is measured in Au+Au 200 GeV collisions at RHIC-PHENIX experiment.

In high p_T region

\Box Photon v_n is close to zero while hadron shows non-zero v_n .

✓ Prompt photons which are $v_n \approx 0$ are dominant.

In low p_T region

 \Box It is found non-zero and positive v₃ in low p_T.

- ✓ Photon v_n is created by the expansion of medium from the initial geometry.
- □ Blast wave model describes photon observables well.
 - ✓ It is suggested that the evolution of the medium is needed to be taken into account.

2015/03/13

2015/03/13

Photon analysis in heavy ion collision

The properties of photon in high energy heavy ion collision

- emitted during all stages of the collisions
- don't interact with the medium

We can access the evolution of the collision.

2015/03/13

Hadronic decay photon

10¹¹

10⁸

10⁵

10²

10⁻¹

10⁻⁴

0.2

0.15

0.1

0.05

0

 p_{T} spectra : m_{T} scaling

meson p_T spectra

v_n : quark number scaling

¹⁰ p_(GeV/c)¹⁵

¹⁰ p_(GeV/c)¹⁵

5

5

meson V_2

10¹¹

10⁹

10⁷

10⁵

 10^{3}

10

10⁻¹

0.2

0.15

0.1

0.05

0 0

0

PHENIX detector

Central Magnet

4.4 billion events are analyzed.

$$v_n = \left\langle \cos\left\{n(\phi - \Psi_n)\right\} \right\rangle$$

2015/03/13

Direct photon (M.Sanshiro)

Side View

The excess of direct photon

The excess of direct photon has been measured in the wide p_{T} range.

The methods of virtual photon and external conversion photon are sensitive to low p_{T} region.

Less than 4 GeV/c, direct photons are included by 20 % in inclusive photon.

$$R_{\gamma} = N_{inc.}/N_{dec.}$$

2015/03/13

Why direct photon v_3 is measured?

Radial flow effect (blue shift effect) : It makes apparent temperature higher than true temperature. Photons from late state are dominant. $v_2 > 0 : v_3 > 0$

Large magnetic field : **Direction of magnetic field is strongly** related with $\Psi_2(R.P.)$ but not with Ψ_3 . v₂>0 : v₃≈0

v₃ measurement could provide additional constraint on photon production mechanism.

P.R.C 89, 044910 (2014) baseline photon spectrum w. equilibrium rate 00 ibrium emission rates

 $T' = T \sqrt{\frac{1+\beta}{1-\beta}}$

True Temperature

2015/03/13

Azimuthal anisotropy (Elliptic flow)

- anisotropic pressure gradient in participant zone (Initial state)
- QGP expansion (hydrodynamic motion, η/s) (η is shear viscosity and s is entropy density)
- hadron production mechanism (coalescence)

(1) : Initial geometry is converted into final azimuthal anisotropy

(2) : (expected to be) sensitive to η/s

2015/03/13

Photon emitting angle dependence

It is expected that the emitted angle of photons depends on their sources.

- Initial hard scattering : v₂≈0
- Medium induced : v₂≤0
- Jet fragmentation : v₂≥0
- Radiation from expanding medium : v₂>0

The measurement of photon azimuthal anisotropy is a powerful probe to identify the photon sources.

Event Plane correlation

P.R.L. 107, 252301 (2011)

 Ψ_2 and Ψ_3 are uncorrelated.

2015/03/13

Photons by external conversion

Published

Real photons in EMCal : 1 - 20 GeV/c large errors at low p_T (resolution, contamination)
Virtual photons from e⁺e⁻ : 1 - 4 GeV/c

New method

Real photons are measured by e^+e^- pair from external photon conversion at the HBD readout plane. \checkmark less hadron contamination \checkmark good momentum resolution p_T range : 0.4 ~ 5GeV/c Extended to lower p_T low statistics

M_{HRD}: Real track M_{vtx} : Measured track RICH HBD 600 500 400 0.015 300 0.01 200 0.005 100 0.03 0 005 0.01 0.015 0.02 0.025 M_{vtx}[GeV]22

2015/03/13

External conversion photon

- 1) real photon converts to e^+e^- in HBD backplane
- 2) default assumption: track come from the vertex
- 3) momentum of the conversion tracks will be mis-measured (see black tracks)
- 4) apparent pair-mass (about 12MeV) will be measured for phtons
- 5) assume the same tracks originate in the HBD backplane
- 6) re-calculate momentum and pair mass with this "alternate tracking model"
- 7) for true converted photons $\rm M_{\rm atm}$ will be around zero

Real track estimated track

2015/03/13

Direct photon (M.Sanshiro)

24

Identified charged particle v_n

arXiv:1412:1038

It is observed that

- all harmonics have mass ordering
- there are meson and baryon splitting

All particles are scaled by modified NCQ scaling.

(a) :
$$v_2(KE_T)/n_q$$

(b) : $v_n^{1/n}$ scaling
(a)+(b) : $v_n(KE_T)/n_q^{n/2}$

2015/03/13

Since it is difficult to measure mesons except for pion, the other mesons p_T spectra are estimated by m_T scaling from pion experimental data.

P.R.C 69,034909 P.R.L. 101,232301 P.R.C 82,011902 P.R.C 84,044902

2015/03/13

Meson v_n estimation

It has been known that hadron v_n as a function of KE_T are scaled by the number of constituent quark. Meson v_n is estimated from pion v_n .

$$p_{T,meson} = \sqrt{\left(\sqrt{p_{T,\pi}^2 + M_{\pi}^2} - M_{\pi} + M_{meson}\right)^2 - M_{meson}^2}$$

The number of constituent scaling Centrality 0-50% arXiv:1412:1038 (b) -0.12 (a) $v_{3} \{\Psi_{3}\} / n_{q}^{3/2} x 2.5$ 0.1 $V_n/n_q^{n/2}$ 0.02 :KE_T/n_a correlated sys. of π^* -0.02 0.5 1.5 0.5 1.5 2 2 0 0 KE_T/n_α [GeV] n

2015/03/13

Model comparison of photon v₂

PRC 84,054906 PRC 89,034908

(Orange) Transport model considering photons from hadron phase (Blue, red) Fireball model

Hydrodynamic calculations (cyan, pink, and violet) including photons from late state, are much underestimated.

2015/03/13

Model comparison of v_2 and v_3

PRC 84,054906P.R.D 89,026013PRC 89,034908arXiv:1404.3714

Dark violet is based on magnetic field effect, upper limit is shown. Model calculations of photon v_3 are much smaller than experimental data.

The data of v_3 may help to constrain parameters in model calculations.

2015/03/13

The ratio of v_2 to v_3 in p_T region

 π^{\pm} : arXiv:1412:1038 Model : arXiv:1403.7558 Private communication

- Photons don't have strong centrality dependence at around 2-3 GeV/c
- Pions increase from central to peripheral

Photon and pion show different centrality dependence.

2015/03/13

Photon observables predicted by blast wave model

The p_T spectra is well described by

- Low temperature (T_f=104) with radial flow < ρ >=0.66
- High temperature (T_f=240) with radial flow < ρ >=0 v_n=0 with radial flow < ρ >=0

Blast wave could suggest that photon puzzle is understood by the radial flow effect.

2015/03/13

 $\gamma^{dir.}$ v₂ in high E_T region are consistent with 0 within systematic uncertainty, while π^0 has positive v₂.

2015/03/13

photon v_n measurement by ALICE

It is also observed that $\gamma^{dir.} v_2$ is positive in low p_T at LHC-ALICE. v_3 measurement is ongoing.

2015/03/13