Research and development for the Forward Calorimeter as an ALICE upgrade project to study forward physics

Masahiro Hirano For ALICE FoCal collaboration University Of Tsukuba WORKSHOP ON FORWARD PHYSICS AND HIGH-ENERGY SCATTERING AT ZERO DEGREES AT NAGOYA

Outline

- Introduction
 - ALICE experiment at LHC
 - Forward physics
 - ALICE upgrade plan
 - FoCal project in ALICE
- Simulation result
 - π^0 detection efficiency
 - Direct photon selection
 - Pb-Pb π^0 performance

- Test beam in 2014
 - LGL result at test beam in 2014
 - HGL result at test beam in 2014
- Summary & next

Introduction

ALICE experiment at LHC

Quark Gluon Plasma - The state of early universe

- Quarks and gluons move freely

Color Grass Condensate(CGC)

ALICE upgrade plan

Upgrade of various detectors are planned for LHC Long Shutdown

FoCal project in ALICE

- FoCal : Forward Calormeter
- One of the upgrade plan in ALICE experiment
- Components
- Electromagnetic Calorimeter : FoCal-E
- Hadron Calorimeter : FoCal-H
- •Acceptance : 3.3 < η < 5.3

FoCal-E strawman design

- W/Si sandwich calorimeter
 W absorber + Si sensors
 Moliere radius : R_M = 9.3mm
 Radiation length : X₀ = 3.5mm(1 layer)
- Longitudinal segmentation : two different module
- Low Granularity Layer(LGL) : 5 segments
 - •1 segment = 4 layers of Si/W
 - •1 layer = 64 PADs(8 × 8)
 - Silicon PAD size : 1 × 1 cm²
 - Signals are longitudinally summed

- High Granularity Layer(HGL) : 2 segments

- CMOS-pixel
- Pixel size : $30 \times 30 \ \mu m^2$
- Digital signals are summed in 1 mm² cells

1 HG cell

Low Granularity Layer(LGL)

Prototype(made by Oak Ridge National Laboratory)

Summing board has 128 channel output
1/1(high gain) positive output : 0ch ~ 63ch
1/16(low gain) negative output : 64ch ~ 127ch

We can change the gain by changing reading polarity

WORKSHOP ON FORWARD PHYSICS AND HIGH-ENERGY SCATTERING AT ZERO DEGREES

Silicon(Hamamatsu S10938-9959(X))

beam

low granularity

in segments

pad-layers ≈1cm²,

longitudinally summed

pad-segments

high granularity pixel-layers

effectively ≈1mm²,

likely using MAPS

read-out boards

for pad segments

tungsten layers ≈3.5mm thickness

Simulation result

π^0 detection efficiency

Direct photon selection

Pb-Pb π^0 performance of invariant mass 80 $\begin{array}{l} 5.0 < p_{_{T,T^0}} < 9.0 \; GeV/c \\ 4.0 < \eta_{_D}^{_{T,T^0}} < 4.5 \end{array}$ 5.0 < p_ . < 9.0 GeV/c $3.5 < \eta'' < 4.0$ 70 70F Single particle single particle PbPb embedded 60 PbPb embedding(HIJING + single π^{0}) 50 30 20Ē 10F 10

0.15

0.2

M,, (GeV/c2)

0.25

0.05

0.1

Performance worse than pp, but good enough for $p_T > 10 \text{ GeV/c}$

2015/09/11

0.05

80

0.1

0.15

0.2

M_{rr} (GeV/c²)

0.25

Test beam in 2014

test beam at PS and SPS

This is first test beam experiment for LGL of Tsukuba group!!

At PS, we use the cherenkov detector to identify electron

4 segments are stacked on the rail
→fix the position
→attention : summing board inversed

 Inside black box
 4 LGL segments and 2 HGL with trigger scintillator

HGL testbench

MAPS has about 24 layers of HGL with tungsten

MAPS from the top

This is a special setting for measuring performance of HGL

Measurement of spatial resolution and energy dependence, resolution...

LGL result at test beam in 2014

LGL readout system

Readout Electronics : developed by CERN RD51 group

• APV25 hybrid board Output : 128ch Sampling speed : 40MHz

Gain : high gain(1/1) and low gain(1/16)

SRS(Scalable Readout System) ADC

ADC board : 12 bit ADC
Simultaneous readout from 8
APV hybrid board(Master)

- FEC board : the front-end which processes information from ADC

FEC

LGL readout system

DAQsoftware

mmDAQ : DAQ system by ATLAS micromegas

PS result Energy Dependence Event/nEvent 0.16 2 GeV 0.14 3 GeV We were able to identify 2GeV and 3GeV beam energy 0.12 0.1 0.08 \rightarrow We couldn't see the energy 0.06 dependence from 4GeV to 10GeV 0.04 \rightarrow signals are saturated 0.02

5000

10000

15000

20000 Sum of ADC channels[ch]

25000

PS result

Comparison of Noise

Optimization of the GNDIntroduction of regulation power supply

SPS result

Energy Dependence

Signal : over the pedestal value Gain : low gain(1/16) Data taking energy : 30, 50 GeV

Result: 30, 50 GeV

Energy dependence (PS and SPS)

HGL result at test beam experiment

<u>summary</u>

• Forward Calorimeter in ALICE will be able to observe the unique signal

- small-x gluons and saturation
- CGC proving initial condition
- early thermalization of QGP

 In our first test beam 2014, we were able to see the shower shape and energy dependence

<u>next</u>

•We have the second test beam schedule on Oct – Nov. 2015 at PS and SPS

• For good energy resolution, we need to reduce the noise level and more statistics

•We joined RD51 group and started work of new readout board from this summer

• in this winter, we will aim at ALICE approval. LHCC approval is next step

Thank you for your attention!

Back up

FoCal-E strawman design

- W/Si sandwich calorimeter(prototype : ORNL)
- W absorber + Si sensors Moliere radius : R_M = 9mm
 - Radiation length : $X_0 = 3.5$ mm(1 layer)
- Longitudinal segmentation : two different module
- Low Granularity Layer(LGL) : 4 segments
 - 4(or5) layers of Si/W per 1 segment
 - Cell size : 1 × 1 cm²
 - 1 layer has 64 PADs(8 × 8)
 - Signals are longitudinally summed

- High Granularity Layer(HGL) : 2 segments

- CMOS-pixel
- Pixel size : 25 × 25 μm²
- Digital signals are summed in 1 mm² cells

1 HG cell

Low Granularity Layer(LGL)

• Peak width ~ 10 MeV over large range in p_T

Pb-Pb efficiency π^0

FOCAL performance: γ in p-Pb

Old 4m geometry used; will be updated soon

Using same numbers for π^0 identification, isolation eff as 14 TeV

Excellent precision for direct γR_{pPb}

Lower p_T reach uncertain due to uncertainties on rates ~4-5 GeV should be in reach

4<η<5 uncertainties smaller; intrinsic S/B better

Analysis method

● ● ●	Marge — root — 62×17
hep03:Marge wsato root [0] Attaching file ru root [1] raw->Sho =====> EVENT:0	b\$ root −l run.root un.root as _file0 uw(0)
<pre>apv_evt time_s time_us apv_fecNo apv_id apv_ch mm_id mm_readout mm_strip apv_q apv_presamples root [2]</pre>	<pre>= 1 = 1416308254 = 277914 = (vector<unsigned int="">*)0x7fc963d9e370 = (vector<unsigned int="">*)0x7fc963d9f000 = (vector<unsigned int="">*)0x7fc963d9f730 = (vector<string>*)0x7fc963da0140 = (vector<unsigned int="">*)0x7fc963da0940 = (vector<unsigned int="">*)0x7fc963da1210 = (vector<vector<short> >*)0x7fc963da1b50 = 0</vector<short></unsigned></unsigned></string></unsigned></unsigned></unsigned></pre>

Data of mmDAQ is outputted root File

apv_evt : number of event apv_id : APV ID apv_ch : APV channel

apv_q : raw data of 27 time bin

Channel mapping

If summing board is inverse, line is symmetry

43

PS result

Energy dependence

DEGREES

Comparison of Noise

Comparison of Noise

LGL1

Energy dependence (PS and SPS)

FoCal group goal for FoCal-E

Each

LGL

- Measurement of shower energy
- Measurement of energy resolution
- Development of speedy readout system

HGL

- Separation of shower shape
- Measurement of spatial resolution

And so on...

total

Trigger merge of HGL and LGL

- radiation damage study
- Lol accepted
- Future plan
- Mini-FoCal installation after LS2
- Full FoCal installation after LS3

LHC Timeline

DAQ rate

MIMOSA Sensors

- Monolithic Active Pixel Sensors (MAPS)
 - Si-sensors + electronics in CMOS on single substrate
 - thin sensitive layer (≈20µm)
 - charge collection by diffusion
- existing chips
 - readout of analog signals by rolling shutter
 - slow: 640µs readout time
 - 0.35µm technology

M. Winter et al., IPHC Strasbourg

HAMAMATSU

シリコンフォトダイオード S10938-9959(X)

■ 材料仕様 項目 値 単位 結晶面方位 (1, 0, 0) 厚さ 500 ± 15 μm 裹面不感層 20 μm

■ 外形仕様

項目	値	単位
chip size	93 × 93	mm
Number of PDs	64 (8 × 8)	ch
PD pitch(X)	11300	μm
PD pitch(Y)	11300	μm
Single P+ size	11250 × 11250	μm
Single Al size	11280 × 11280	μm
PAD size	100 × 200	μm
Number of PADs	4	/ch

■ 特性仕様

項目	値	単位
Vfd	< 220	V
ld	< 20	nA/ch(VR=Vfd)
Ct	30	pF/ch(VR=Vfd)
NG ch	< 2	%(1ch MAX)

■ 検査仕様

項目	内容	
ld	各 ch の ld、Vr=100V、150V、200V、250V	
Ct	各 ch の Ct、Vr=100V、150V、200V、250V	
Vfd	モニタ PD での Ct 測定値より換算	

シリコンフォトダイオード S10938-9339(X)

■外形寸法図(単位:µm)

このカタログの記載内容は、平成22年4月現在のものです。製品の仕様などは予告なく変更することがありますので、あらかじめご了承ください。

浜松ホトニクス株式会社

☎(03)3436-0491ファックス(03)3433-6997

2015/09/11

Shower profile

To observe expanse of the shower, we use the following equation

$$\begin{array}{ll} \hline \mbox{The center of gravity 's equation} \\ x^{(s)} \equiv < x^{(s)} > \equiv \frac{\sum_{i,j} ADC^{(s)}_{i,j} \cdot x^{(s)}_i}{\sum_{i,j} ADC^{(s)}_{i,j}} & s = 1, 2, 3, 4 \quad i, j = 1, \cdot \cdot, 8 & \mbox{i , j : PAD of x & y axis} \\ y^{(s)} \equiv < y^{(s)} > \equiv \frac{\sum_{i,j} ADC^{(s)}_{i,j} \cdot y^{(s)}_j}{\sum_{i,j} ADC^{(s)}_{i,j}} & s = 1, 2, 3, 4 \quad i, j = 1, \cdot \cdot, 8 \end{array}$$

Shower profile

- •beam : 2GeV electron
- Longitudinal shower profile
- shower max d (for W) = 19.27mm $\leftarrow 2^{nd}$ LGL
- Transverse shower profile

$$d = 0.35 ln (\frac{E_{incident}}{8.11[MeV]} - 0.5)[cm]$$

- re-calculate shower center (centroid)
- Moliere radius (for W) : 9.16mm
- Iongitudinal and transverse shower profiles are consistent with the expectation

Gap of center of gravity for the hit

2015/09/11