J-PARC における 重イオン衝突の物理

~新たなアプローチによるQCD相図解明に向けて~

中條 達也(筑波大学) Heavy Ion Pub 2015年7月24日

目次

I. 高エネルギー重イオン 実験の簡単な歴史

- 重イオン衝突=非常に dynamical. 時空発展
 による物理現象の理解が不可能
- ・ 衝突エネルギーの変化→ dynamics と QCD
 相図上の軌跡が変化

Slide from H. Hamagaki

BNL-AGS; Alternating Gradient Synchrotron $(1986-, \sqrt{s_{NN}} = 5 \text{ GeV})$

Baryon stopping

dN/dy

Fig. 1. Rapidity density of net protons (i.e., number of protons minus number of antiprotons) measured at AGS, SPS, and RHIC (BRAHMS) for central collisions [19]. At RHIC, where the beam rapidity is y = 5.4, the full distribution cannot be measured with current experiments, but BRAHMS will be able to extend its unique results to y = 3.5 from the most recent high statistics Au + Au run, corresponding to measurements extending to 2.3 degrees with respect to the beam direction.

Radial flow (expansion) and blue shift

w/o expansion:

Energy (p_T) distribution determined by temperature T:

Boltzmann distribution (thermal distribution)

w/ expansion:

Particles are pushed by common velocity (flow). The larger energy for the heavier particle (kinetic energy ~ mv^2).

Particles come towards an observer (blue shift)

Boltzmann + radial flow effect

- \checkmark Flatter mt distr for heavier particle mass
 - Mass Ordering of slope parameter T.
- ✓ Collective flow boosts pt distr. according to its mass

Elliptic flow crossover at AGS energy

Beam energy dep. of v₂

- Low energy (~200MeV): positive v₂
 - bouncing off of colliding nuclei
- Medium energy (200 MeV 4 GeV): negative v₂
 - blocking effect by spectators
- High energy (>4 GeV): negative to positive v₂
 - better separation between spectators and participants
 - Nuclear mean field
 - Pressure gradient (EOS)

CERN-SPS; Super Proton Synchrotron (1986-, √s_{NN} = 17 GeV)

NA50 Collaboration

http://na50.web.cern.ch/NA50/

Survival Probability

•T. Matsui and H. Satz, Phys. Lett. **B178**, 416 (1986).

Anomalous J/ψ suppression is observed.

$$\epsilon_0(y) = \langle m_\perp \rangle \frac{1}{\tau_0 A_\perp} \frac{dN}{dy} ,$$

CERES/NA45

Anomalous enhancement of dilepton pairs are observed.

A hint of chiral symmetry restoration (but other models can also explain it)

BNL-RHIC; Relativistic Heavy Ion Collider (2000-, $\sqrt{s_{NN}} = 200 \text{ GeV}$)

Jet quenching @ RHIC (= energy loss of parton in QGP)

 $R_{\rm AA} = \frac{\text{"hot/dense QCDmedium"}}{\text{"O CDmedium"}}$

"QCD vacuum"

- No observation at lower colliding beam energy (e.g. SPS)
- To reproduce data by "Jet quenching" parton energy loss model:
 - Gluon density: dNg/dy ~ 1100
 - Energy density: $\epsilon > 100 \epsilon_0$ (!)
 - (= ε > 15 GeV / fm3)
- 2) Disappearance of back-to-back jets
 Energy loss ~ few GeV/fm
 - Cannot explained by hadron gas.
 - → One of the evidences of QGP formation

T. Chujo, 2013 Joint Workshop of FJPPL (TYL) and FKP

 $dn_{\rm AA}/dp_{\rm T}dy$

 $= - \overline{\langle N_{
m binarv} \rangle \cdot dn_{
m pp}} / dp_{
m T} dy$

Strongly interacting QGP, perfect fluid (2005)

Contact: Karen McNulty Walsh, (631) 344-8350 or Mona S. Rowe, (631) 344-5056

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

TAMPA, FL -- The four detector groups conducting research at the Relativistic Heavy Ion Collider (RHIC) -- a giant atom "smasher" located at the U.S. Department of Energy's Brookhaven National Laboratory -- say they've created a new state of hot, dense matter out of the quarks and gluons that are the basic particles of atomic nuclei, but it is a state quite different and even more remarkable than had been predicted. In peer-reviewed papers summarizing the first three years of RHIC findings, the scientists say that instead of behaving like a gas of free quarks and gluons, as was expected, the matter created in RHIC's heavy ion collisions appears to be more like a liquid.

v₂: quark number scaling

arXiv:1412.1043v1 (PHENX)

Quark number (n_q) scaling
 → Indication that anisotropy
 developed at parton level, not
 hadronic level.

Quark Coalescence also explains v2 behavior

Strong coupling and shear viscosity

slide from Y. Miake

internal resistance to flow

Low η

High η

LHC (Large Hadron Collider) 2009-, √s_{NN} = 2.76, 5.1 TeV

LHC: Circumference : 27 km

Nov. 8, 2010 First Pb-Pb collisions at LHC, the opening new era of heavy ion program at LHC

第1期 LHC重イオン衝突実験結果のハイライト (Run-I: 2009-2013)

- 初期到達温度: T_{int} ~ 304 ± 51 MeV (RHIC の 1.4 倍).
- 大きな集団膨張 (等方, 楕円) (ALICE, ATLAS, CMS)
- 大きなジェット抑制効果 (ALICE, ATLAS, CMS)
- Y 励起状態の消滅 =高温物質生成の証拠 (CMS)

一方、日本では

Slides from S. Nagamiya (J-PARC HI workshop @ KEK, Nov. 2014)

→ Bevalac で重イオン加速 → J-PARC 計画へ統合 KEK トリスタン計画発足 (1982)

* 日本人重イオン研究者は、海外で実験を行うことになる(AGS, SPS, RHIC, LHC)

世界の動向

- アメリカ・BNL RHIC Beam Energy Scan II (2018-2019)
- ドイツ・GSI FAIR SIS-100 (2021-)
- ロシア・JINR NICA (2020-)

国内の動向

- しかしながら(米・RHIC BES-II を除き)計画が遅れ気味。
- 将来計画として、日本の J-PARC で重イオンを加速し、このエネルギー領域
 で、これまでなかった別の観点から新しい物理を目指してはどうか
- 「日本の核物理の将来レポート」作成開始 (2010-)
- 2013年頃より、本格的に議論を開始
- エネルギーフロンティア志向 → 高統計・精密測定で迫る高バリオン密度物 質、QCD相構造の解明
- 日本における重イオン衝突実験
 - ある意味、日本人重イオン研究者、あるいは原子核物理研究者の悲願と も言える

日本の核物理の将来レポート 「高エネルギー重イオン」 原子核研究 Vol. 57, Suppl. 2 (2013)

<u>3つの研究の柱:</u>

- QGP物性の精密研究、熱平衡化
 機構(ゲージ場のダイナミクス)
 の研究
- 有限密度QCD相構造の研究 ● カイラル対称性の回復現象の研究

「日本の核物理の将来レポート」より抜粋

2. 何がわかったのか、 何がまだわかっていないのか

(特にQCD相図について)

分かったこと その1

低バリオン密度・高温領域で は、QGPからハドロン相へ、 クロスオーバー相転移する

Recent Lattice QCD calculations:

 $T_{c} = 150-200 \text{ MeV},$

cross over phase transition from hadronic phase to partonic phase (QGP).

分かったこと その2

Nuclear Liquid-Gas Phase Transition

FIG. 2. Caloric curve of nuclei determined by the dependence of the isotope temperature T_{HeLi} on the excitation energy per nucleon. The lines are explained in the text.

* A temperature scale was derived from observed yield ratios of He and Li isotopes.

分かったこと その3

どのエネルギー領域の粒子比も、熱的統計モ デルを使ってよく記述できる。また、そこで 決定される化学的凍結温度とバリオン密度は QCD 相図上にあるラインを形成する。

Braz. J. Phys. vol.37 no.2c São Paulo June 2007 http://dx.doi.org/10.1590/S0103-97332007000500024

Space-time evolution of Heavy Ion Collisions

- Parton scattering
 (parton) thermal equilibrium
 and QGP formation
 Chemical freeze-out (ceases
 inelastic scattering, particle
 ratios fixed)
 Kinetic freeze-out (ceases
 elastic scatting, particle
 - momentum fixed)

Hadron production in the local thermal equilibrium (1)

- Assume (1) local thermal equilibrium (T = const.) and (2) chemical equilibrium (n: particle multiplicity = const.)
- Particle multiplicity (n_i) can be determined by Temperature T, chemical potential µ,
- From Grand Canonical Ensemble for fermions and bosons:

$$n_{i} = \frac{g}{2\pi^{2}} \int_{0}^{\infty} \frac{p^{2} dp}{e^{(E_{i}(p) - \mu_{i})/T} \pm 1}, \quad E_{i} = \sqrt{p^{2} + m_{i}^{2}}$$

Simplest form:

$$dn \sim e^{-(E-\mu)/T} d^3 p$$

Hadron production in the local thermal equilibrium (2)

- A particle ratio (e.g. pbar-p ratio)
 - Ratio of μ/T is determined.
- Another particle ratio (e.g. K/ π ratio)

 $- \ T \to \mu$

- By repeating these procedure (fit), one can determine the all particle ratios and abundances by from <u>T and µ only</u>.
- This model is called "statistical thermal model"
- Need the measurements of particle ratios and parameter fitting for T and μ (μ_B).

$$\frac{\overline{p}}{p} = \frac{e^{-(E+\mu)/T}}{e^{-(E-\mu)/T}} = e^{-2\mu/T}$$

$$\frac{K}{\pi} = \frac{e^{-(E_K)/T}}{e^{-(E_\pi)/T}} = e^{-(E_K - E_\pi)/T} \approx e^{-\Delta m/T}$$

LHC data: 2.76 TeV Pb+Pb

Braz. J. Phys. vol.37 no.2c São Paulo June 2007 http://dx.doi.org/10.1590/S0103-97332007000500024

45

分かったこと その4

SPS 以上のエネルギーではレプトン対生成に 既知のハドロンからの寄与以上の余剰成分が ある (LHC は未発表)

Spontaneous Chiral Symmetry Braking

Dileptons from fireball

Dalitz:	Heavy flavor:	Direct:
π ⁰ →γe+e-	cc→e+e- +X	ρ →e+e -
η → γe+e-	bb→e+e- +X	ω →e+e-
ω → π⁰e+e-		φ→e+e-
φ → ηe+e-	Drell-Yan:	J/ψ→e+e
	qq→e+e-	ψ' →e+e -

= Known Source = "Cocktail" vs. Experimental data

Dileptons

 probe the entire space-time evolution of the fireball (continuously emitted during the evolution)

 Not subject to strong interactions, not significantly affected by the medium at later stages of the collision

R(fireball) ≈10-15 fm

$$m_{e+e-} = \sqrt{p_{e+}p_{e-}} \sin \frac{\vartheta_{e+e-}}{2}$$

Excess on di-electron mass spectrum (data)

Enhancement

Excess on di-electron mass spectrum (data)

A. Agakichiev et al., Phys. Rev. Lett. 75, 1272 (1995). A. Agakichiev et al., Eur. Phys. J. C4, 231 (1998).

まだ分かっていないこと

 R_{CP} = (yields in central x $N_{coll(cent)}$)/(yields in peripheral x $N_{coll(peri)}$)

10

- RHIC ビームエネルギースキャン (BES-I; Beam • Energy Scan), 7.7 - 62.4 GeV による臨界点探査
 - R_{AA}, v₂のクォーク数スケーリング、揺らぎ測 定など
 - 未だ明確な兆候なし
- より詳細なスキャン (BES-II) @ RHIC (2018-2019)

2. レプトン対測定の解釈の難しさ: カイラル対称性の破れは見えたのか、見えないのか?

・高エネルギー重イオン

- SPS-NA60 (PRL 96 (2006) 162302)
 - Modification of ρ meson due to hadronic effects
- RHIC-PHENIX (PRC81(2010) 034911)
 - Origin of the enhancement is under discussion
- RHIC-STAR
 - Enhancement is seen, but much smaller than PHENIX
- ・ 原子核標的 (p-A)
 - HADES (G. Agakishiev et al. Eur.Phys.J. A 48 64 (2012).)
 - Enhancement in low mass region
 - CBELSA/TAPS (Phys.Rev. C82 (2010) 035209)
 - Modification of $\boldsymbol{\omega}$ is not observed
 - J-LAB CLAS G7 (PRL 99 (2007) 262302)
 - Mass broadening of $\boldsymbol{\rho}$ due to hadronic effects
 - KEK-PS E325 (PRL 96 (2006) 092301)
 - Peak shift and width broadening of ρ/ω

Slides from K. Ozawa (RIKEN HI tutorial, Mar. 2014), modified

[van Hees+R. Rapp '06]

J-PARC 重イオン衝突の物理

$(V_{S_{NN}} = 1.9 - 6.2 \text{ GeV})$

●軽イオンから U 重イオンまで加速

●AGS では測定しなかった(出来なかった)物理量を初めて測定し、世界最高のバリオ ン密度物質を研究する

– レプトン対(電子, ミューオン)

➡ カイラル対称性回復の研究

- 直接光子
 - ➡ 高バリオン物質からの熱光子放出?
- 揺らぎの測定(バリオン数・電荷等の保存量)
 - ➡ QCD 臨界点探査
- エキゾティックハドロン/原子核、チャームの物理
 - multiple-strangeness (ストレンジレット探査)
 - 2重、3重ハイパー核
 - ・ チャームハドロン(J/Ψ,D)
- ハドロンガスの物性量測定、**高密度核物質の物性**

Beam energy vs. collision rate

J-PARCでの重イオン衝突実験では、世界最高のビーム強度で、

1.9 - 6.2 GeV での重イオン固定標的実験が可能に

この計算(固定標的)では、各加速器でのビームレートと1%反応率を仮定. AGS, SPS (NA61) については、データ取集レートを計算に採用

実験技術の向上

Standard GEM Pitch=140μm Hole φ=70μm

 高レートに耐えうる検出器・データ収集系が利用可能に なってきた (例:ALICE, CBM (FAIR))

J-PARC 重イオン衝突で達成可能な バリオン密度

Baryon density (simulation, JAM Cal. by H. Sako, 2014)

- JAM: hadronic cascade model
- <u>http://phits.jaea.go.jp/OvPhysicalModelsJAM.html</u> Y.Nara et.al. Phys. Rev. **C61** (2000) 024901

Neutron Star - Neutron Star (NS-NS) merger vs. HI collisions at J-PARC

CNN ニュース: http://www.cnn.co.jp/fringe/35035080.html プレスリリース http://www.cfa.harvard.edu/dvlwrap/open_night/ PressConference 2013-07-17 640x360 low.mp4

NS-NS merger can touch unreachable region in phase diagram "high density and (relatively) high temperature" cf T ~ 100MeV, μ_B~ 1000MeV (Shapiro 1998, Chen,Labun 2013)

OCD和則とスペクトル関数

Slides from M. Kitazawa (RIKEN HI tutorial, Mar. 2014), modified

OCD和則とスペクトル関数

Slides from M. Kitazawa (RIKEN HI tutorial, Mar. 2014), modified

comment by 初田さん

International Conference on Soft Dilepton Production LBNL, 1997 http://macdls.lbl.gov/DLS_WWW_Files/DLSWorkshop/proceedings.html

See also, Hatsuda, Hayano, RMP82, 2949

測定精度の時代へ

SPS-NA60

J-PARC では...

p⊤ ビン毎、質量分布の精密測定 → QCD sum rule との直接比較 (moment 解析) **RHIC-STAR**

T. Chujo (U. Tsukuba)

Simulated di-electron spectrum (preliminary)

Based on π^0 spectra of JAM Other hadrons m_T-scaled b<1fm (0.25% centrality) Momentum resolution 2% Electron efficiency 50%

No detector response

 $10^{11} = 100 \text{ G events}$ $\Leftrightarrow 100 \text{ k events/s}$

x 1 month running

 $\boldsymbol{\epsilon}_{\text{isolation}}$ = rejection efficiency of close opening angle Dalitz pair

NA45 (CERES) データより 3 桁高い統計量を1ヶ月で取得! cf.) STAR (BES-II) fixed target program: 5 M events @ √s_{NN} = 5 GeV

Low-mass dielectrons, maximum at J-PARC ?

 Highest baryon density ~ 8GeV (Randrup, PRC74(2006)047901)

T. Galatyuk, EM probes of Strongly Interacting Matter, ECT*, Trento 2007

Event-by-event fluctuations

STAR PRL112 (2014) 032302

Search for the critical point and phase boundary

Direct comparison to lattice-QCD may be possible

- Net-charge
- Net-proton
- Strangeness
- Higher-order fluctuations

High event statistics Wide y, p_T acceptance

Strange meson/baryons

A. Andronic et al, Nucl. Phys. A 837 (2010) 65

Hypernuclei

Invariant mass ³He π^+ (GeV/c²)

Counts

Maximum yield at J-PARC

Coalescence of high-density baryons

S=-3 Hypernuclei

only possible in HI collisions

- Precise secondary vertex reconstruction (mid rapidity)
- **Closed geometry (projectile** rapidity) with full beam intensity

Experiments at the 50-GeV Proton Synchrotron

Charmed particles

CBM Physics Book, W. Cassing, E. L. Bratkovskaya and A. Sibirtsev, Nucl. Phys. A 691 (2001) 753

- c-c produced in the early stage of collisions
 - D,J/ ψ may be modified
 - Probe of high density state

J-PARC energies close to the production thresholds

- D (5.07 AGeV),J/ ψ (4.77 AGeV)

May be possible increase of beam energy from 12 \rightarrow 19 AGeV/c

- √s= 4.9→6.2GeV (U)
- Enhancement due to multi-step processes in A+A?
- Search for charmed baryon in dense matter.

Particle production rates

Beam : 10¹⁰ Hz 0.1% target

→ Interaction rate 10⁷ Hz Centrality trigger 1%

DAQ rate = 100kHz

In 1 month experiment: $\rho, \omega, \phi \rightarrow ee \ 10^7 - 10^9$ D,J/ Ψ 10⁵⁻10⁶ (20AGeV) (10³ -10⁴(10AGeV)) Hypernuclei 10⁵ -10¹⁰

Ref: HSD calculations in FAIR Baseline Technical Report (Mar 2006) A. Andronic, PLB697 (2011) 203

4. J-PARC における 重イオン実験の提案
J-PARC HI Collaboration

Nuclear Experimentalists and Accelerator Physicists

- S. Nagamiya (JAEA/KEK/RIKEN)
- H. Sako, K. Imai, K. Nishio, S. Sato, S. H. Hwang (ASRC/JAEA)
- H. Harada, P. K. Saha, M. Kinsho, J. Tamura (J-PARC/JAEA)
- K. Ozawa, Y. Liu (J-PARC/KEK)
- T. Sakaguchi (BNL)
- K. Shigaki (Hiroshima Univ.)
- T. Chujo, B. C. Kim (Univ. of Tsukuba)
- T. Gunji (CNS, Univ. of Tokyo)
- M. Kaneta (Tohoku Univ.)
- K. Oyama (Nagasaki Institute of Applied Science)

Heavy-ion programs in the world

Accelerator	Туре	Beam energy	C.M. energy	Beam rate / Luminosity	Interaction rate (sec ⁻¹)	Year of experiment
RHIC Beam Energy Scan (BNL)	Collider		7.7-62	10 ²⁶ -10 ²⁷ cm ⁻² s ⁻¹ (Vs=20AGeV)	600~6000 (√s=20AeV) (♂ _{total} =6b)	2004-2010 2018-2019 (e-cooling)
NICA (JINR)	Collider Fixed target	0.6-4.5	4-11 1 9-2 4	10 ²⁷ cm ⁻² s ⁻¹ (√s=9AGeV Au+Au)	~6000 (♂ _{total} =6b)	2019-
<mark>SIS-100</mark> (FAIR)	Fixed target	2-11(Au)	2-4.7	1.5x10 ¹⁰ cycle ⁻¹ (10s cycle,U ⁹²⁺)	10⁵-10⁷ (detector)	2021-2024
<i>SIS-300</i>	Fixed target	35(Au)	8.2	1.0x10 ⁹ cycle ⁻¹		?
J-PARC	Fixed target	1-19(U)	1.9-6.2	10¹⁰ -10¹¹ cycle -1 (~6s cycle)	10⁷-10⁸ ? (0.1% target)	?

References

RHIC: A. Fedotov, LEReC Review, 2013

FAIR: FAIR Baseline Technical Review, C. Strum, INPC2013, Firenze, Italy; S. Seddiki, FAIRNESS-2013, C. Hoehne, CPOD2014 NICA : A. Kovalenko, Joint US-CERN-Japan-Russia Accelerator School, Shizuoka, Japan, 2013, A. Sorin, CPOD2014

J-PARC (JAEA & KEK)

3 GeV Rapid Cycling Synchrotron (RCS)

2

400 MeV H- Linac

Color Martin

CEE

50 GeV Main Ring Synchrotron (MR) [30 GeV at present]

-**0.75** MW

75

JFY 2006 / 2007
JFY 2008
JFY 2009

Hadron Experimental Hall (HD)

Advantages of RCS/MR for HI beam

1. Existing 3 GeV and 50 GeV synchrotrons HI injector and injection section in RCS are necessary

2. Large acceptance

(transverse ϵ >486 π mmxmrad, longitudinal $\Delta p/p>1\%$)

- ⇒ Multi-turn injection of high-intensity HI beam
- 3. Proven performance for high-intensity proton beam Current status of MR
 - Slowly extracted proton beam at 30 GeV 2.5x10¹³/cycle (6s)→1.3x10¹⁴ (2017)
 Well understood accelerator performance Optics, lattice imperfections, acceleration, beam loss

Possible accelerator schemes at J-PARC

Physics goals

• Dileptons (dielectron and dimuon)

- J-PARC E16 p+A
- Systematic and high statistics hadron measurements
 - Strange meson and baryons
 - Event-by-event fluctuations (higher-order cumulants)
 - HBT (YN, YY correlations in high baryon density)
 - flow (EOS)
- Rare particles
 - Hypernuclei
 - Exotic hadrons
 - A(1405)
 - Dibaryon (H-dibaryon, ΩN , $\Delta \Delta$,...)
 - Kaonic nucleus (K⁻pp,...)
 - Charm
 - J/ ψ , D, charmed baryons
- Photons
 - Thermal photons from QGP

Experimental requirements

• High rate capability

- Fast detectors
 - Silicon trackers, GEM trackers, ...
- Extremely fast DAQ
 - >= 100kHz

• High granularity

– Pixel size < 3x3mm²

(at 1m from the target, θ <2deg, 10% occupancy)

- Large acceptance (~4π)
 - Coverage for low beam energies (CBM<30°, beam energy>=8AGeV/c)
 - Maximum multiplicity for e-b-e fluctuations
 - Backward physics (target fragment region)

GEANT4 simulation

JAM model
 U+U collisions
 (10AGeV)

U+U at 10 AGeV (Preliminary)

1.5

0.5

0_1

0

 $\pi^+(rec)$

40 20 2 3 5 rapidity Acceptance (including decay loss) 97.5% р 72.3% K π 87.1%

12(

100

80

60

PID and momentum (Preliminary)

Simulated di-electron spectrum (preliminary)

GEANT4 (Toroidal) setup

全体:佐甲氏 (JAEA) RICH 担当:B. Kim (筑波大, M1)

検出器 R&D: MRPC-TOF

- ・時間分解能 30 ps は達成可能な見込み
- ・中條(筑波大)、稲葉(筑波技術大)、野中(D1, 筑波大)
- ・JAEA, KEK との共同研究開始 (2015-)
- J-PARC E-16 でのハドロン測定、J-PARC 重
 イオン実験へ

筑波大学 University of Tsukuba

switched コンデンサアレイを搭載した 5GSa/s 高速波形読み出しボード DRS-4 (PSI 社製)

図4 DRS-4 波形読み出しと実際の波形

Status of J-PARC HI Program

- Design of accelerators and experiments
 - A conceptual design report (white paper).
 - Collaboration with CBM
 - Acceleration schemes with RCS and MR are being studied
 - Simulation studies of the experiment are going on
- Detector R & D
 - J-PARC E16 (electron/hadron in p+A)
 - J-PARC proton beams (10¹⁰ Hz)
 - Starting in 2016
 - Baseline data for A+A data

まとめ

- J-PARC における重イオン衝突実験
- 最大バリオン密度領域でのQCD相構造の研究
 - 新たなアプローチ(高統計・高精度・系統測定)で拓ける
 新物理
 - レプトン対測定: QCD sum rule との直接比較により、
 高密度領域でのカイラル対称性
 - 揺らぎ測定:臨界点探査およびQCD相構造の解明
- 実現に向けて、様々な活動が進行中(e.g. White Paper 作成、J PARC E-16 実験とのコラボ、検出器 R&D、simulation)
- 皆様のご支援、ご協力、ご参加を! T. Chujo (U. Tsukuba)

謝辞

- この講演スライドを作成するにあたり、以下の方々から多くの有用なスライドを拝借いたしました。ここに感謝申し上げます。
- 佐甲博之さん (JAEA)
- 北沢正清さん (大阪大)
- 小沢恭一郎さん (KEK)

√ 参考

- 原子核研究 (2015) 新しい潮流「J-PARCでの重イオン衝突に よるQCD相構造研究への道筋」佐甲博之、北沢正清 共著
- 研究会「J-PARCにおける重イオン衝突実験が拓く新しい物 理」(KEK, Nov. 2014)の講演スライド