Recent flow results at RHIC

Hiroshi Masui / University of Tsukuba

Flow and heavy flavour workshop in high energy heavy ion collisions: GRN workshop, Inchon, Feb./24-26, 2015
Outline

• Multi-strange hadrons
 ‣ Mass ordering violation

• v_2 at RHIC Beam Energy Scan
 ‣ Identified hadron v_2
 ‣ Blast wave model fit to v_2

• Direct photon v_n & blast wave fit

• Summary
Reminder

\[
\frac{dN}{d\phi} \propto 1 + 2 \sum_{n=1}^{\infty} v_n \cos (n[\phi - \Psi_n])
\]

\[v_n = \langle \cos (n[\phi - \Psi_n]) \rangle\]

- \(v_n \neq \) (hydrodynamical) flow
 - \(v_n\) is the azimuthal anisotropy of particles in momentum space
- Crucial to understand the non-flow background
 - momentum conservation (on \(v_1\)), resonance decay, jet, …
- Multi-particle correlation (cumulant), and/or large rapidity gap are typical methods to avoid non-flow
 - Most of non-flow is 2-particle correlation, short-range correlation in (pseudo)rapidity
Multi-strange hadrons
Multi-strange hadrons (\(\phi, \Omega\)) freeze-out early

- Ideal hydrodynamical model with hadron cascade shows mass ordering violation between \(p\) and \(\phi\)
 - \(v_2(p) < v_2(\phi)\) in low \(p_T\)
 - radial flow at late stage + less hadronic cross section for \(\phi, \Omega\)
Multi-strange hadrons

- Multi-strange hadrons (φ, Ω) freeze-out early
- Ideal hydrodynamical model with hadron cascade shows mass ordering violation between p and φ
 - \(v_2(p) < v_2(\phi) \) in low \(p_T \)
 - radial flow at late stage + less hadronic cross section for \(\phi, \Omega \)
Particle identification

- Topological reconstruction of Ξ and Ω
- Combinatorial background is estimated by rotational background from the same event
Mass ordering of $v_2(p_T)$

- Event plane with gap $|\Delta \eta| = 0.1$
- $v_2(\phi) > v_2(p)$ at low p_T
 - The effect is stronger in central
 - qualitatively consistent with the prediction from hydro. + hadron cascade model

STAR Preliminary
Recent update of hydro. model

- Initial geometry fluctuation (MC Glauber), Lattice EoS
- Reasonable agreement with the data

Centrality dependences of distributions for $|\eta|<0.5$, $|\eta|<1.0$, $|\eta|<0.75$, ϕ, $\Lambda + \bar{\Lambda}$, $\Xi^- + \Xi^+$, $\Omega^- + \Omega^+$, v_2.
Effect of hadronic rescattering

- Less rescattering effect on multi-strange hadrons
 - Mean p_T for multi-strange hadrons deviate from m_T scaling
 - v_2 almost unchanged between fluid and final stages
$v_2(\phi)$ vs $v_2(p)$

- **Compare v_2 below ~1 GeV/c in p_T**
 - $v_2(\pi) > v_2(p) \geq v_2(\phi)$ without rescattering
 - $v_2(\pi) > v_2(\phi) > v_2(p)$ with rescattering
- **Confirmed violation of mass ordering**
 - ~20% effect around 0.5 GeV/c in minimum bias events
• $v_2(p) > v_2(\phi)$ in 7.7 - 62.4 GeV
 ‣ Hadronic phase become dominant ?
 ‣ Temperature dependent η/s ?

STAR: PRC88, 014902 (2013)

200 GeV is special ?

![Graph showing v_2 vs. p_T for various energies and particle species.](image)
v_2 in RHIC Beam Energy Scan
RHIC Beam Energy Scan

- Cross-over transition at $\mu_B=0$
 - from 1st principle Lattice QCD calculations
- If phase transition is 1st order at high baryon density, the end point is QCD critical point
- Beam energy scan \rightarrow reach high baryon density
- Goals of BES at RHIC:
 - Search for turn-off QGP signals
 - Search for signals of 1st order phase transition
 - Search for signals of QCD critical point
Number of Constituent Quark scaling

PHENIX: PRL98, 162301 (2007)

- **Apparent scaling by** $KE_T = m_T - m_0$
 - Meson and baryon branches
- **NCQ scaling of** $v_2 \rightarrow$ hadronization by parton coalescence
 - Originally predicted in intermediate p_T
 - Scaling works well down to low KE_T at RHIC

Figures 2(a) and 2(b)

- Measurement of particle elliptic flow (v_2) as a function of transverse momentum (p_T) and invariant energy (KE_T) for various particle species from PHENIX and STAR collaborations.
- Scaling shown by the plots, indicating a common trend for different particle species.

Figures 3(a) and 3(b)

- Similar to Figures 2, showing the ratio of elliptic flow to multiplicity (v_2/n_q) for different particle species.
- The plots demonstrate the scaling property at different multiplicity bins.

Graphical Details

- **Axes:**
 - v_2 vs. p_T (GeV/c) and KE_T (GeV)
 - v_2/n_q vs. p_T/n_q (GeV/c) and KE_T/n_q (GeV)

Legend:

- Various particle species are represented with different markers and colors, including $\pi^+\pi^-$, $p\bar{p}$, K^+K^-, $\Lambda\bar{\Lambda}$, K^0_s, and $\Xi^+\Xi^-$.
- The plots show data points from PHENIX and STAR collaborations.
NCQ scaling of v_2

- Two branches, mesons & baryons in $v_2(m_T-m_0)$ at 62.4 GeV
- Antiparticles already scaled before dividing by n_q at 11.5 GeV
 - NCQ scaling doesn’t hold for antiparticles
- ϕ meson could be deviated at 11.5 GeV (statistics is limited)
Particles vs antiparticles

- **Quantify the difference of** \(v_2 \) **between particles and antiparticles**
 - NCQ scaling does not hold between particles and antiparticles
 - Scaling seems to work separately

- **Difference of** \(v_2 \) **increase with decreasing beam energy, in particular for baryons**

- **Difference of** \(v_2 \) **is linear as a function of** \(\mu_B \)
 - Related to baryon stopping?
Blast wave model

\[v_2(p_T) = \frac{\int_0^{2\pi} d\phi_s \cos(2\phi_s) I_2[\alpha_t(\phi_s)] K_1[\beta_t(\phi_s)][1 + 2s_2 \cos(2\phi_s)]}{\int_0^{2\pi} d\phi_s I_0[\alpha_t(\phi_s)] K_1[\beta_t(\phi_s)][1 + 2s_2 \cos(2\phi_s)]} \]

\[\alpha_t(\phi_s) = \frac{p_T}{T} \sinh \rho(\phi_s), \quad \beta_t(\phi_s) = \frac{m_T}{T} \cosh \rho(\phi_s), \]

\[\rho(\phi_s) = \rho_0 + \rho_a \cos 2\phi_s, \quad \beta = \tanh(\rho_0) \]

- **Assumptions**
 - boost invariant longitudinal expansion
 - system expands with common transverse velocity \(\beta \)
 - freeze-out at constant temperature \(T \)
- **Mass dependence only appears in \(\beta_t \) via \(m_T \)**
- **Fit particles and antiparticles separately in \(p_T < 1.2 \text{ GeV/c} \)**
 - Simultaneous fit for measured particles (or antiparticles) with 3 parameters \((s_2, \rho_0, \rho_a) \)
 - \(T \) is fixed to 120 MeV since published \(p_T \) spectra is not available
Blast wave fit to $v_2(p_T)$

- Excluded pions from the fit for RHIC data (huge feed down)
- Clear mass ordering in blast wave fit
Why does blast wave work?

\[\beta_t(\phi_s) = \frac{m_T}{T} \cosh \rho(\phi_s) \]

- For the same \(\beta \)
 - heavier particles have larger \(p_T \)
 - \(K_1(\beta_1) \sim \exp(-\beta_1) \)
 - For a given \(p_T \), \(v_2 \) is more out-of-plane extended for heavier particles
 - because particles around in-plane pushes to higher \(p_T \)
 - lighter particles have larger \(v_2 \)
Feed down on pions?

- pions
 - data > blast wave in 7.7-200 GeV

- feed down?
 - Use MC simulation to evaluate feed down
 - due to lack of spectra, resonance measurements
Large radial flow for antiparticles

- Large spread of v_2 for antiparticles at lower energies
- Fit is better for antiparticles in terms of χ^2
Transverse velocity

- Different β for particles and antiparticles at lower energies
- Possible scenarios
 - Antiparticles produced early \rightarrow large β since radial flow is cumulative
- Fraction of net-protons (stopped protons) increase, already significant at 62.4 GeV \rightarrow baryon stopping?
Transverse velocity

- Baryon stopping?
 - v_2 could be different for produced and transported quarks \rightarrow particles are contaminated by transported u & d quarks
 - Surface emission of antiprotons due to the absorption \rightarrow effect is larger for lower energies (larger μ_B), smaller at higher energies
Direct photon v_n
Direct photon puzzle

- Enhancement of direct photon p_T spectra relative to $p+p$
 - Inverse slope $T \sim 240$ MeV (0-20%) for the excess of p_T spectra
- Large v_2 for direct photon at low p_T
 - Comparable to the v_2 for π^0
- Is direct photon emitted early (p_T spectra) or late (v_2)?

$PHENIX: \text{PRL}109$, 122302 (2012)
Several scenarios

- Strong magnetic field $\rightarrow v_2 > 0$, $v_3 \sim 0$
- Radial flow effect $\rightarrow v_2 > 0$, $v_3 > 0$
- Measurements of v_3 provide additional constraints on direct photon production mechanism
Direct photon v_3

- Non-zero, positive v_3
- No strong centrality dependence, similar with hadron v_3
- Strong magnetic field scenario cannot explain the data
Blast-wave fit to direct photon p_T spectra & v_n

- p_T spectra can be fitted with the same T for hadrons
- Reasonable description for v_2 & v_3
Summary

• Multi-strange hadron v_2 at 200 GeV shows mass ordering violation
 ‣ need quantitative comparison with the latest hydrodynamical models

• v_2 at RHIC BES (particles vs antiparticles)
 ‣ NCQ scaling break down between particles and antiparticles
 ‣ can be understood as different radial flow velocity (if mass ordering of v_2 is only due to radial flow)
 ‣ Need more statistics, better model calculations

• Finite direct photon v_n at RHIC
 ‣ Naive strong magnetic field scenario cannot explain the data
 ‣ Large v_n, blast wave fit (if applicable) could support that direct photons are emitted from late stage