LHC-ALICE実験における 超前方光子測定用カロリメーター試作機の データ収集系の構築と性能評価

筑波大学 数理物質科学研究科 物理学専攻 高エネルギー原子核研究室 佐藤航、益井宙、伊藤喬一郎、稲葉基、平野勝大 細川律也、江角晋一、中條達也、塩谷知弘、三明康郎

Outline

- Introduction
 - QGPと高エネルギー加速器実験
 - ALICE実験「FoCal Project」と研究目的
- ・データ収集系の構築
 - エレクトロニクス
 - mmDAQ
- ・テストビーム実験
 - PS/SPSのセットアップ
 - 実験結果
- まとめ

QGPと高エネルギー加速器衝突実験

QGP: Quark Gluon Plasma

- 超高温・高密度状態において達成する未知の物質状態

通常では強い相互作用により核子内に 閉じ込められている「クォーク」と「グルーオン」が 自由に飛び回る状態

高エネルギー重イオン衝突実験による再現

p-p : \sqrt{s} = 14TeV Pb-Pb : \sqrt{s}_{NN} = 5.5TeV

物理的モチベーション

15/03/21(Sat)

FoCal Project in ALICE

- FoCal : Forward Calorimeter

- ALICE実験のアップグレード計画の1つ
 2022年のLong Shutdown3に完成機
 導入を目指している
 - ・構成 電磁カロリメーター : FoCal-E ハドロンカロリメーター : FoCal-H
 - ・アクセプタンス: 3.3 < η < 5.3

FoCal-E Detector

HGL : High Granularity Layer 1×1mm²のCMOS-pixel検出器

y/π⁰の識別

15/03/21(Sat)

研究目的

- 2022年Long Shutdown3に完成機導入に向けて
 - ORNLによって作成されたFoCal-E試作機LGLの データ収集システムを構築する。
 - CERN PS/SPS加速器でテストビーム実験を行い エネルギー依存性、分解能などの性能評価を行う。

-タ取得システム

CERN RD51 groupが開発したエレクトロニクスを使用した

CERN PS/SPS テストビーム実験

PS 2014/9~10 : T9テストビームライン SPS 2014/11 : T4-H8テストビームライン

• Beam

- 粒子 :e,π
- 運動量 : 2~10(PS) , 30, 50(SPS) GeV/c
- Trigger
 - Scintillator 1×1cm2
 - Scintillator 10×10cm2
 - ガスチェレンコフ検出器(PSのみ)

エネルギー依存性

・PSにおいては2~4GeV(High Gain)、SPSにおいては30GeV、50GeV(Low Gain) でシグナルのエネルギー依存性がみられた。

High Gainで5GeV以降はエネルギー依存性は見られなかった。
 ガスチェレンコフ検出器のエフィシェンシー、シグナルの飽和が原因と考えられる

線形性・エネルギー分解能

まとめと今後

- ・FoCal-E LGL試作機のための、データ収集系システムをCERN RD51 groupの開発したエレクトロニクスを使用して構築した。
- ・CERN PS/SPSテストビームラインにて、初めての性能評価を行った。
 - High Gainで2~4GeV、Low Gainで30GeV、50GeVでエネルギーに対する シグナル依存性を確認した。
 - シミュレーションと比較してエネルギー分解能が良くない。
 - ノイズの低減の問題に対して、現在使用しているエレキの見直しが必要。
- ・次回テストビーム実験に向けて
- 2015年10月~11月にCERN PS/SPSで行われる予定
- 今回のテストビーム実験ではHGLとは別のDAQシステムを使用しており データのマージができなかった。データをマージするためのトリガーコン バーターの研究開発が必要である。

ご清聴ありがとうございました。

The LCH Timeline

カラーグラス凝縮

CGC : Color Grass Condensate

- 高エネルギー状態で達成する原子の初期状態

ハドロンはそれらを構成するクォークからなるが 高エネルギー状態でのハドロンの構成要素は グルーオンが高密度に飽和した状態

高エネルギー極限のQCDで予言 - <u>高エネルギー衝突型実験で理論モデルのパラメーターの決定・検証</u>

FoCal-E strawman design

FoCal-E strawman design

15/03/21(Sat)

FoCal-E strawman design

A Forward Calorimeter(FoCal) for the ALICE experiment

DAQレートのテスト

ノイズ対策

Summing boardとAPVを短い グランド線で繋ぐことにより 大幅なノイズの削減に成功

15/03/21(Sat)

ノイズ対策

Channel Mapping

mmDAQの出力チャンネルに対応したMAPを作成

基盤、設置の関係からLGL1を基準に取った時 LGL2:中心に対して点対称 LGL3:Xに対して線対称 LGL4:中心に点対称かつXに対して線対称

	34	36	2	4	63	61	31	29
	38	40	6	8	59	17	27	25
	42	44	10	12	55	53	23	21
	46	48	32	30	33	35	19	17
	50	52	28	26	37	39	15	13
	64	62	24	22	41	43	1	3
	60	58	20	18	45	47	5	7
1	56	54	16	14	49	51	9	11

MSR-006-R0-2013-FOCAI

Data format

		Marge - root - 62×17	्रज्ञ
・mmDAQのデータはrootファイルとして出力	hep03:Marge wsato\$ root [0] Attaching file run root [1] raw->Show	root -l run.root .root as _file0	8
apv_evt:イベント数 apv_id : APVのID apv_ch : APVのチャンネル apv_q : 27 time bin の生データ	<pre>=====> EVENT:0 apv_evt = 1 time_s = 1416308254 time_us = 277914 apv_fecNo = (vector<unsigned int="">*)0x7fc963d9e370 apv_id = (vector<unsigned int="">*)0x7fc963d9f000 apv_ch = (vector<unsigned int="">*)0x7fc963d9f730 mm_id = (vector<string>*)0x7fc963da0140 mm_readout = (vector<unsigned int="">*)0x7fc963da0140 mm_strip = (vector<unsigned int="">*)0x7fc963da01210 apv_q = (vector<vector<short> >*)0x7fc963da1210 apv_presamples = 0 root [2]</vector<short></unsigned></unsigned></string></unsigned></unsigned></unsigned></pre>		
apv_id	apv_ch	RawSignal	
$\begin{array}{c} x 10^{2} \\ 600 \\ - \\ 500 \\ - \\ 400 \\ - \\ 300 \\ - \\ 0 \\ - \\ 0 \\ - \\ - \\ 0 \\ - \\ - \\$		¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	

apv_id

15/03/21(Sat)

Hitの定義と解析に使用した値

・ペデスタルのフラクチュエーションを各LGL、Padに対して計算

以下の条件に当てはまったものをHitとみなした

 $apv_q \max > \mu + 4\sigma$

シグナルの飽和

・ビームを当てた時のFoCalのシグナルが飽和している

- High Gainは2GeVですでに飽和していた
- Low Gainは50GeVでシグナルが飽和している

エネルギー分解能

・シミュレーションと比較してエネルギー分解能が悪い
 - 統計項はシャワーの粒子数に依存する。Si検出器、及びエレクトロニクス部分で
 シグナルの飽和がおきシャワー中の粒子数をきちんと計測できていない
 - 定数項では現在のノイズレベルが高いことに起因

MIPシグナル

