# Forward direct photons with FoCal in ALICE

### Tatsuya Chujo Univ. of Tsukuba

ハドロン散乱ゼロ度測定勉強会

Mar 2, 2015

Nagoya University









- 1. Physics motivation:
  - isolated photons at forward rapidity as a signature for small-x gluons
- 2. Detector requirements
- 3. R&D status and plan
- 4. Summary

## CGS picture at LHC



• Gluon saturation, **Color Glass Condensate (CGC)** is a fundamental feature of QCD, expected to be appeared in high energy.

•From the results in d-Au (RHIC) and p-Pb (LHC) collisions, there are indications of CGC, but not yet conclusive.

• Many observables are used hadrons, which include final state interactions.

 A cleaner probe at forward rapidity is necessary, such as <u>direct photons</u>

**LHC** : Larger kinematic reach in saturation region at LHC, compared to RHIC.



### Forward Hadron Production in p-A at LHC



- Hadron suppression on forward (proton-going) side at low p<sub>T</sub>.
- J/ψ not described by nPDFs nor by a CGC calculation
- Uncertainties on:
  - Production mechanism (x sensitivity etc.)
  - Other nuclear modifications (e.g. energy loss, thermalization in pA?)
- Difficult to obtain conclusive data by hadrons only.

## x-Sensitivity from PYTHIA



- Very limited sensitivity with light hadrons
- Much better sensitivity with Drell-Yan and direct photons
- Much lower cross section for Drell-Yan
  - Not sufficient for measurement in p-Pb
- Direct photons are optimum prove for a gluon saturation

# nPDF/DGLAP vs. CGC



- Two scenarios for forward γ production in p+A at LHC:
  - Normal nuclear effects linear evolution, shadowing
  - Saturation/CGC running coupling BK evolution

- Strong suppression in direct  $\gamma$  R<sub>pA</sub>.
- Signals expected at forward  $\eta$ , low-intermediate  $p_T$ .

## Initial condition and thermalization





RHIC/LHC data suggests an early thermalization of QGP (< 0.2 fm), and it is still a **big missing link** between initial condition to QGP.

Direct access to initial condition by direct photon

### **Initial conditions of Heavy Ion Collisions**



Understanding of initial condition: →key to understand the QGP properties (e.g. η/s), early thermalization.



### η/s, temperature dependence







IP-Glasma Model (color charge fluctuation)
Higher harmonics → η/s constraints Minimum η/s at RHIC ?

•Temperature dep?

Björn Schenke (BNL) RHIC AGS Users' Meeting 2013, BNL C. Gale, S. Jeon, B.Schenke, P.Tribedy, R.Venugopalan, PRL110, 012302 (2013)



### **The ALICE Experiment**





## Forward Calorimeter (FoCal) in ALICE



•Electromagnetic calorimeter for  $\gamma$  and  $\pi^0$  measurements, with Hadron Calorimeter.

• At  $z \approx 8m$  (outside magnet) 3.3 <  $\eta$  < 5.3

- Proposed schedule:
  - mini-FoCal: 2018- (after LS2)
  - full FoCal: 2023- (after LS3)

Main challenge: separate  $\gamma/\pi^0$  at high energy

- Need small Molière radius, high-granularity read-out
- Si-W calorimeter, granularity  $\approx 1 \text{ mm}^2$

## **FoCal-E Strawman Design**





- Si/W sandwich calorimeter layer structure:
  - W absorbers (thickness 1X<sub>0</sub>)+ Si sensors
- Longitudinal segmentation:
  - 4 segments low granularity (LGL)
  - 2 segments high granularity (HGL)

### • LGL segments (PAD)

- 4 (or 5) layers of Si/W
- Si-PAD with analog readout
- cell size 1 x 1 cm<sup>2</sup>
- 8 x 8 = 64 PADs per layer
- signal are longitudinally summed

#### • HGL segments (MAPS)

- single layer with W.
- CMOS-pixel (MAPS\*).
- pixel size  $\approx 25 \text{ x} 25 \text{ } \mu\text{m}^2$
- digitally summed in 1mm<sup>2</sup> cells \*MAPS = Monolithic Active Pixel Sensor



## Strawman Design

Studied in performance simulations: 24 layers:

- W (3.5mm  $\approx$  1 X<sub>0</sub>) + Si-sensors (2 types)
- low granularity ( $\approx 1 \text{ cm}^2$ ), Si-pads
- high granularity (≈ 1 mm<sup>2</sup>), obtained with pixels (e.g. CMOS-MAPS)



### **Detector Performance (simulation)**



**Energy resolution (FoCal-E)** 

**Pion rejection factor** 



- Reasonable energy resolution, extremely good two-shower separation with HG segments (~0.2 mm position resolution at  $E_{\gamma}$  > 100 GeV)
- Efficient for pion rejection (via shower shape analysis)

### Performance on R<sub>pPb</sub>



- Expect significant constraint on direct photon R<sub>pPb</sub>
- Confirm or refine the CGC effect, constrain nPDF
   ハドロン散乱ゼロ度測定勉強会,名古屋大学 (T. Chujo) ALICE FoCal

### Low Granularity Layer (LGL) Prototype, PAD







#### LGL (PAD) prototype (ORNL):

- Si-PAD (Hamamatsu S10938)
- cell size 1x1 cm<sup>2</sup>
- longitudinally summed (4 layers), analog readout = 1 segment
- 4 or 5 LGL segments
- W layer per Si-PAD

#### **Readout system:**

- ORNL ASICs, on a summing board.
- RD-51 SRS readout system:
  - APV25 hybrid (128 ch, pre-amp, shaper)
  - SRS Front End Card (FEC) and ADC.
    - SRS: <u>S</u>calable <u>R</u>eadout <u>System</u> (point-to-point readout)

### Responsibility: <u>Tsukuba</u>, ORNL

### High Granularity Layer (HGL) Prototype, MAPS



MAPS prototype



- 4x4 cm<sup>2</sup> cross section, 28 X<sub>0</sub> depth
- 24 layers: W absorber + 4 MAPS each
- MIMOSA PHASE 2 chip (IPHC Strasbourg)
  - 30 µm pixels
  - 640 µs integration time (needs upgrade – too slow for experiment)
- 39 M pixels total
- Test with beams at DESY, CERN PS, SPS



**Event Display:** *measurement (DESY) of pile-up of two 5.4 GeV electrons, demonstrates two-shower separation capabilities* 

### **CERN PS/SPS beam test (2014)**

- ✓ Beam time:
  - PS: Sep. 17 Oct. 1, 2014– SPS: Nov. 10-18, 2014
- ✓ Beam line: PS T9, SPS H8
- Beam energy:
  - -2 10 GeV/c
  - 30, 50 GeV/c
- ✓ Trigger: 10x10 cm<sup>2</sup> & 1x1 cm<sup>2</sup> Scinti. + Cherenkov (ON/OFF)
- ✓ Responsibility:
  - LGL (PAD) :Tsukuba, ORNL
  - HGL (MAPS) Utrecht, NIKHEF, Bergen



Drawing by Brink, A. van den (Utrecht Univ.)



### **Prototype of "a strawman design"**







# LGL (PAD), 4 segments w/ summing board

LGL (PAD) + HGL (MAPS x2) "strawman detector"

### **PS** results (show profile)

- Longitudinal shower profile:
- Transverse shower profile:
  - re-calculate shower center (centroid)
  - Moliere radius (for W): 9.16 mm
- Both longitudinal and transverse shower profiles are consistent with the expectations.

#### LGL1 LGL2 LGL3 LGL4 Y pos - Y <sub>center</sub> [cm] Depth : 3.5 - 14 [mm] Depth : 17.5 - 28 [mm] Depth : 31.5 - 42 [mm] Depth : 45.5 - 56 [mm] -6 -8 -6 -4 -2 0 -2 8 -8 -6 -4 -2 8 -8 -6 -4 -2 0 6 -8 0 2 6 0 4 2 4 6 2 8 X<sub>1</sub><sup>pos</sup> - X<sub>1</sub><sup>center</sup> [cm] X<sub>2</sub><sup>pos</sup> - X<sub>2</sub><sup>center</sup> [cm] X2 - X2 ハドロン散乱ゼロ度測定勉強会,名古屋大学 (T. Chujo) ALICE FoCal





### FoCal PAD performance (2014 beam test) W. Sato





- Reasonable linearity (except 50 GeV).
- Worse energy resolution in data than simulation due to a noise problem, to be improved in 2015 test beam experiment.

#### ハドロン散乱ゼロ度測定勉強会,名古屋大学 (T. Chujo) ALICE FoCal

### Plan (2015-)

- Preparation for Nov. 2015 PS/SPS beam test. ٠
- Ask the FoCal Lol approval by ALICE in June, then the LHCC approval in Nov.
- Under discussion: Mini-FoCal:
  - FoCal-E prototype (< 10% of acceptance)</li>
  - to be installed significantly before LS3 (possibly around LS2), no modifications to ALICE setup

#### R&D with RD51: •

- Tsukuba G. will join RD-51 in 2015 spring officially.
- Communication with Hans M. (RD51) started for VMM2 (and/or Beatle) readout system for FoCal.
- Need to check that VMM2 SRS system meets our requirement for a faster ( $\sim$  few 100 kHz w/o trig.) readout. (c.f. APV25 < 200-300 Hz)

| ALICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ALICE-PUBLIC-2013-XXX<br>February 14, 2013 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Letter of Intent<br>A Forward Calorimeter (FoCal) for the ALICE experiment                                                                                                                                                                                                                                                                                                                                                                                               |                                            |
| The ALICE FoCal Collaboration*                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |
| <b>Abstract</b><br>We propose to construct a forward electromagnetic calorimeter (FoCal) as an upgrade to<br>the ALICE experiment. This new detector will provide unique capabilities to study small.x<br>gluon distributions via prompt photons and will also significantly enhance the capabilities<br>of ALICE for general photon- and jet-æ lated measurements. The FoCal is a finely granular<br>Si/W-calorimeter covering pseudorapidities up to $\eta \simeq 5$ . |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |
| VMM2 SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS Hybrid                                  |
| VMM2 SF                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS Hybrid                                  |

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH



#### 22

VMM2 availability in quantity

### **FoCal on C-side?**

• Place detector at end of conical section of C-side beam pipe?

–possible coverage  $5.5 < \eta < 6.5$ 

interesting for low-x physics

- -very limited space, measurement feasible?
  - particle density (Pb-Pb) and background tolerable?

-no overlap with muon arm

- Pb–Pb case with QGP physics questionable
- -possible as extension to FoCal on A-side?



Figure 8.15: Conceptual layout of the ALICE vacuum chamber system.



- Limited physics case
  - -diffraction?
  - -baryon stopping considered interesting
    - expected at  $\eta = 6-7$
    - no competing theoretical predictions
- Would need tracking, magnet, particle ID at large  $\eta$ 
  - -very challenging, in particular PID
  - -may need z > 19m

### **Muon Forward Tracker (MFT) Project**







## MFT: Muon Forward Tracker, proposed in ALICE (-4.0 < $\eta$ < -2.5)

- Silicon pixel tracker in Muon Spectrometer
- Separation of charm/beauty down to very low p<sub>T</sub>
- Precise ψ(2s) measurement even in central Pb-Pb
- Prompt and non-prompt  $J/\psi$  separation
- Improve S/B ratio and mass resolution for Low Mass di-muons

The MFT project has been approved by the ALICE Collaboration to be part of the ALICE upgrade planned for the LHC LS 2017/2018

### Hiroshima G. joined for this project in 2014.







- Forward isolated direct photons at LHC are unique signal for lowx gluons and saturation.
- Mini-FoCal installation ~LS2 (2018), and full installation after LS3 (2023-).
- MFT upgrade project.
- Schedule on 2015:
  - Lol submission to ALICE and then to LHCC after the approval.
  - Beam test on Nov. 2015
  - New readout R&D with CERN RD-51 (VMM2)