Heavy-flavour productions in the relativistic heavy ion collisions

Shingo Sakai, Univ. of Tsukuba

Heavy Flavour (HF) in pp, p-Pb & Pb-Pb

- Heavy-flavour (charm & beauty) production
 - Initial hard scatterings ($M_{HF} >> \Lambda_{QCD}$)
 - Flavour creation, flavour excitation, gluon splitting
- pp collisions
 - Test for perturbative QCD (pQCD)
 - Reference for heavy ion collisions (both experiment & theory)
- Heavy ion collisions
 - Created in initial parton-parton scatterings
 - Traverse and interact with the hot & dense QCD matter
 - A good probe to study properties of the QCD matter
 - Energy loss (R_{AA}), collectivity (v_2), hadronization
- pA collisions
 - Control measurement for heavy ion collisions to disentangle initial from final state effects
 - Cold nuclear matter effect on heavy-flavour production

Energy Loss of heavy flavours

- In-medium parton energy loss
 - Radiative energy loss (PLB 632, 81)
 - gluon bremsstrahlung
 - smaller energy loss for heavy than for light quarks due to "dead cone" effect (PLB 519 (2001) 199.)
 - energy loss depends on the colour charge and is larger for gluons than for quarks
 - Collisional energy loss (PLB 649, 139)
 - energy loss via elastic scattering
- Theoretical predictions:
 - mass & colour charge dependence of energy loss
 - $E_{loss}(g) > E_{loss}(u,d,s) > E_{loss}(c) > E_{loss}(b)$

 $R_{AA}^{\pi} < R_{AA}^{D} < R_{AA}^{B} ?$

Nuclear modification factor

 $R_{\rm AA}(p_{\rm T}) = \frac{d N_{\rm AA}/dp_{\rm T}}{\langle T_{\rm AA} \rangle \times d\sigma_{\rm T}/dp_{\rm T}}$

Azimuthal anisotropy of Heavy flavours v

Elliptic flow

 $dN/d(\phi-\psi_{RP}) = ... + N_0(1+2v_2\cos(2(\phi-\psi_{RP}))) +...$

- Transfer initial spatial anisotropy to momentum anisotropy
 - macroscopic: hydro model
 - => pressure gradient
 - □ microscopic
 - => scattering in the medium
- Low p_T
 - coupling of heavy quarks with the medium and their thermalization
- Intermediate p_T

Hadronization mechanism (recombination)

High p_T

Path-length dependence of energy loss

of particle emission

Heavy-flavour results in pp collisions

HF production in pp collisions at RHIC

 Charm and beauty production via electrons are in good agreement with FONLL calculation

6

HF production in pp collisions at LHC

Charm production in pp collisions at LHC

- D meson production mid- and forward-rapidity is in good agreement with pQCD calculations
 - upper side of the FONLL uncertainty band
 - various energies: 5.02, 7 and 13 TeV
 - from $p_{\rm T}$ = 0 to 100 GeV/c

8

Beauty production in pp collisions at LHC

CMS-DP-2016-016

ALI-PUB-82148

9

Beauty jets production in pp collisions at LHC (2) JHEP 04 (2012) 084

Total c-cbar & b-bbar cross section in pp

- Cross section of charm and beauty are in good agreement with pQCD
- Beam energy dependence is consistent with pQCD (NLO, FONLL)

11

Heavy-flavour results in pA collisions

p-A collisions

Heavy-flavour in p-A collisions

 control measurement for heavy-ion collisions to disentangle initial (cold nuclear matter effects) from final state effects

Cold nuclear matter effects

 nuclear modification of Parton distribution Functions (PDF): shadowing or gluon saturation

K.J. Eskola et al., JHEP 0904(2009)65 H. Fuji & K. Watanabe, NPA 915 (2013) 1

- energy loss I. Vitev et al., PRC 75(2007) 064906
- k_T broadening (Cronin enhancement)
- multiple collisions

A.M. Glenn et al., PLB 644(2007)119

 $R_{pPb}(p_{\rm T}) = \frac{d N_{\rm pPb}/dp_{\rm T}}{\langle T_{\rm AA} \rangle \times d\sigma_{\rm pp}/dp_{\rm T}}$

 R_{dA} of e^{HF} & μ^{HF} at RHIC

R_{pPb} of D, B and e^{HF} at mid-rapidity at LHC

- R_{pPb} of D mesons, B mesons and e^{HF} is consistent with unity
 - No significant cold nuclear matter effects on heavy-flavour production
- Theoretical calculations with CNM effects are consistent with data
 - predict a small suppression at low p_T due to gluon saturation at low x

R_{pA}: RHIC vs. LHC

- Enhancement of e^{HF} production in 0-20% in d+Au is well reproduced by Blast-wave model [PLB 731 (2014) 51]
- Possible enhancement due to radial flow is predicted smaller at LHC
 - consistent with data
 - due to harder D and B meson p_T at higher collision energy

- Measured c-jet cross section in p-Pb is consistent with PYTHIA simulation
- R_{pPb} of b-jet with PYTHIA-based estimation is consistent with unity
 - considering the uncertainty on the PYTHIA reference

D production at forward-backward rapidity

LHCB-CONF-2016-003

- D⁰ production at forward and backward rapidity
 - forward: p-going, 1.5 < y < -4
 - backward: Pb-going, -5 < y < -2.5
- Significant D⁰ production asymmetry in forward backward rapidity regions
- Measurements are consistent with a theoretical calculation
 - NLO with CTEQM and EPS09NLO

B-> J/Ψ production at forward-backward rapidity

- B->J/ Ψ production at 1.5 < η < 4.0 (forward) and -5 < η < -2.5 (backward)
- R_{FB} of B->J/Ψ is asymmetry
 - backward yield is suppressed w.r.t. forward yield
- R_{FB} of B->J/ Ψ is larger than R_{FB} of prompt J/ Ψ
 - indicate cold nuclear matter effect is less pronounced for b hadrons

Heavy-flavour results in AA collisions

D mesons in Au-Au (200 GeV)

- D meson production at 200 GeV in Au-Au collisions
- Total production follow binary scale
- low p_T (< 2 GeV/c): tend larger than unity
 - recombination, radial flow ?
- high p_T (>2 GeV/c): strongly suppressed
 - indicate charm energy loss in the matter

21

R_{AA} of e^{HF} (c->e and b->e) in Au-Au (200 GeV)

Charm and beauty separation

- R_{AA} of D->e and B->e
- Strong suppression both electrons original from charm and beauty indicate charm and beauty energy loss in the matter
- R_{AA} of B->e and D->e are consistent within current uncertainty
 - not conclude mass dependence of energy loss

D mesons in central Pb-Pb collisions (2.76 TeV)

$e^{HF}\,\&\,\mu^{HF}\,production$ in Pb-Pb collisions (2.76 TeV)

- Strong suppression of e^{HF} (|y|<0.6) & μ^{HF} (2.5<ÿ<4) in central collisions</p>
 - similar suppression of $e^{HF} \& \mu^{HF}$ in different rapidity regions
 - Iess suppression in mid-central collisions in both rapidity regions
 - high p_T: large contribution from beauty
- Suggest significant energy loss of charm and beauty in the medium

RHIC vs. LHC: D meson production

 Similar order of suppression of D meson production in 0.2 TeV (Au-Au) and 2.76 TeV (Pb-Pb) in most-central collisions at 2<p_T<6 GeV/c

Looks there is difference at low p_T

- recombination, radial flow @ RHIC ?
- shadowing @ LHC ?

RHIC vs. LHC: HF->e production

- Similar order of suppression of c->e + b->e production in 0.2 TeV (Au-Au) and 2.76 TeV (Pb-Pb) in most-central collisions at 3<p_T<9 GeV/c
- Not imply similar HF energy loss between RHIC and LHC
 - combined effect of a denser medium and harder initial p_T spectrum at LHC arXiv:1509.06888

R_{AA} of B meson decays (B->e & B->J/\Psi) in LHC

- Suppression of B->e and B->J/ Ψ at high p_{T}
 - lower p_T : tends to follow binary scaling (consistent with unity)
 - high *p*_T (> 3 GeV/*c*): R_{AA} ~ 0.4-0.5
- Suggestions of beauty energy loss in the dense QCD matter

R_{AA} of charged particles, D and B->J/ Ψ in LHC

CMS-PAS-HIN-16-001

- The magnitude of D meson suppression is similar to charged particles (π) within uncertainties at $p_{T} > 8 \text{ GeV}/c$
 - can't conclude on the expectation : R_{AA} (D) > R_{AA} (π)
- R_{AA} of D meson is smaller than R_{AA} of B->J/ Ψ
 - indication of smaller energy loss of beauty than charm

- Heavy-flavour jets: allow to address energy loss at parton level
- Observed strong suppression of b-jets in most-central collisions
 - similar magnitude of suppression to inclusive jet
 - high p_{T} b-jets: largely comes from gluon splitting

Imbalance of pairs of b jets in LHC

similar imbalance as inclusive dijet

Azimuthal anisotropy of $HF\left(D\text{ and }e\right)$ at RHIC

- Non-zero HF v₂ (D & e^{HF}) in Au-Au collisions at 200 GeV
- v_2 at lower energies (62.4 & 39 GeV) is consistent with zero at $p_T < 2$ GeV/c
 - non-zero light-flavour (π,k & p) v₂ in the energy regions (arXiv:1601.07052)

Azimuthal anisotropy of D mesons in LHC

PRC 90 (2014) 034904

- Non zero D v₂ at low p_T
- Tends to get large from central (0-10%) to mid-central (30-50%)
 - Hydrodinamical behavior
- Consistent with charged particle v₂
- Charm quarks participate to the collective motion of the system

32

Azimuthal anisotropy of $e^{\rm HF}$ and $\mu^{\rm HF}$ in LHC

e^{HF} : arXiv: 1606.00321, μHF: PLB 753 (2016) 41-56

- Non-zero v_2 of e^{HF} at |y| < 0.7 and μ^{HF} at 2.5<y<4
 - the magnitude is compatible in mid- and forward-rapidities
- v_2 of e^{HF} measured from $p_T > 0.5$ GeV/c
 - similar p_T dependence to other light hadron v₂
- v₂ at high p_T e^{HF} and µ^{HF} reflects beauty
- Charm quarks participate to the collective motion of the system

Comparison with models (I)

JHEP09(2012)112

- Theoretical calculations
 - initial: with/without cold nuclear matter from PDF
 - medium modeling: Hydro, Glauber, parton transportation
 - Interaction: radiative, collisional, resonant interaction
 - hadronization: fragmentation, coalesence
- Models represent R_{AA} of D mesons, e^{HF} and μ^{HF}
 - mid- and forward-rapidity regions
 - high p_T leptons (e,µ) mainly from beauty decay

BAMPS: J. Phys. G 38 (2011) 124152,
POWLANG: Eur. Phys. J C
71(2011)1666,
UrQMD: arXiv:1211.6912,J. Phys. Conf.
Ser. 426,012032(2013),
TAMU: Phys. Rev. C 86 (2012) 014903,
WHDG: J. Phys. G38(2011)124114,
Aichelin: Phys. Rev. C79(2009)044906,
J. Phys. G37(2010)094019
Cao,Qin, Bass: arXiv:1308.0617

ALICE Preliminary

16 18 20

 $p_{_{\rm T}}$ (GeV/c)

Comparison with models (2)

JHEP09(2012)112

arXiv: 1603.00529

 Model calculations are reasonably reproduced D meson R_{AA} in both RHIC (0.2 TeV Au-Au) and LHC (2.76 TeV Pb-Pb)

Comparison with models (3)

- Theoretical calculations
 - initial: with/without cold nuclear matter from PDF
 - medium modeling: Hydro, Glauber, parton transportation
 - Interaction: radiative, collisional, resonant interaction
 - hadronization: fragmentation, coalesence
- Large suppression and non-zero v_2 (at low p_T) are represented by models, but simultaneous reproduction of the R_{AA} and v_2 is challenging

Comparison with models (3)

- Experimental result
 R_{AA}(D) < R_{AA}(B->J/Ψ)
- Theoretical model
 - radiative + collisional energy loss
 - used two masses (charm and beauty) for calculating B->J/Ψ R_{AA} to study mass dependence
 - result using beauty mass well represents centrality dependence of R_{AA} (B->J/Ψ)
 - the difference between D meson and B->J/Ψ is mainly from mass in this model

Summary

- Heavy-flavour productions in pp collisions at 200 GeV, 2.76 TeV, 7 TeV and 13 TeV
 - The productions are well described by pQCD calculations
- Heavy-ion collisions (Au-Au 200 GeV, Pb-Pb 2.76 & 5.02 TeV)
 - Strong suppression of heavy-flavour yield
 - Clear indication for substantial energy loss of charm and beauty in the hot and dense matter
 - Non-zero & centrality dependence of v₂
 - Suggest strong re-interaction in the medium
- Heavy flavours observed to be significantly affected by hot and dense QCD medium