

HBT measurement with respect to event plane in Pb-Pb at 2.76TeV collisions from ALICE

2016.Sep.23 Naoto Tanaka for the ALICE collaboration University of Tsukuba

JPS meeting @ University of Miyazaki

Space time evolution and azimuthal anisotropy

evolution is required

 $\int d\mathbf{r} = \left[\frac{1}{2} \left(\frac{1}{2} - \mathbf{T} \right) \right]$

● V₂{Ψ₂}

□ V₄{ψ_▲}

0.15

 $d\phi$

HBT

Method to measure the source size with two identical particles

- Quantum interference between two identical particles
- **É Unique tool** to measure source size at kinetic freeze out
- Geometrical source size ≠ HBT radii = "Length of homogeneity"

 \star k_T dependence

Azimuthally sensitive HBT with respect to Ψ_2

- **É** Dividing the pair angle relative to the Ψ_2 in azimuthal plane
- **É** Differential azimuthal angle HBT measurements explores **spatial deformation of the source**
- Hydrodynamical model shows oscillation in azimuthal angle dependence of HBT radii (out-of-plane extended source shape)

Azimuthally sensitive HBT gives us more detailed information of space-time evolution

Azimuthal angle dependence of HBT w.r.t. Ψ_2

- R_{out} has explicit oscillation and R_{side} has weak oscillation
- Rout and Rside oscillate out-of-phase
 - Initial elliptic shape still remains at freeze out (out-of-plane extended source)

 Final source eccentricity is obtained by relative amplitude from Blast Wave model (Phys. Rev. C 70, 044907)

The magnitude of R_{out} R_{side} relative amplitude decreases from central to peripheral collisions

\checkmark	Final source eccentricity
	• $\varepsilon_{\text{final}} = 2 R^2_{\text{side},2} / R^2_{\text{side},0}$
★ Contributing factors to ε _{final}	
	 initial geometry
	 collective flow freeze out time

Fit function

 $< R^{2}_{\mu, 0} + 2R^{2}_{\mu, n} \cos(n(\phi_{pair} - \Psi_{n}))$

*R*²_{µ,0}: Average HBT radii

 $< R^{2}_{\mu, n}$: n_{th} order Oscillation

 \checkmark

Triangular deformation via HBT

AMPT and Blast wave model (S.Voloshin, J. Phys. G38, 124097)

✓ HBT w.r.t. Ψ_3 shows finite oscillation in expanding source, but almost no oscillation in static source

+ HBT w.r.t. Ψ 3 measured @ PHENIX Au+Au 200GeV (Phys.Rev.Lett. 112 222301)

✓ Same oscillation sign of R_{out} and $R_{side} \rightarrow$ Relative amplitude **negative value**

+ HBT w.r.t. Ψ_3 in LHC energy

- Difference between RHIC and LHC
 - Larger radial flow & evolution duration
 - viscosity
- ✓ Hydrodynamic model (P. Bozek, J. Phys. G38, 124097)
 - Relative amplitude of *R*side is negative
 - Triangular deformation is washed-out or even reversed

ALICE detector

In this analysis Trigger & centrality ✓ V0_A : 2.8 < η < 5.1</p> **√** V0_C : -3.7 < η < -1.7 TPC & ITS ✓ Tracking & PID ✓ Vertex \checkmark $|\eta_{\text{track}}| < 0.8$ TOF ✓ PID ✓ Iη_{track}I < 0.8</p> FMD ✓ Event plane ✓ FMD_A : 1.7 < η < 5.0 ✓ FMD_C : -3.4 < η < -1.7

Event plane via FMD

The FMD Detector

- Silicon strip detector
- 3 sub detector : FMD1, FMD2, FMD3
- **2** types of rings : inner and outer
 - inner : 20 sectors ($0 < \phi < 2\pi$)
 - outer : 40 sectors ($0 < \phi < 2\pi$)

Event plane resolution

Event plane resolution are extracted with 3 sub event method

$$\operatorname{Res} \left\{ \Psi_n \right\} = \sqrt{\frac{\langle \cos(n(\Psi_n^A - \Psi_n^B)) \rangle \langle \cos(n(\Psi_n^A - \Psi_n^C)) \rangle}{\langle \cos(n(\Psi_n^B - \Psi_n^C)) \rangle}}$$

FMD event plane and HBT measurement

3rd order harmonics, FMD resolution is approximately 15% better than V0

M This excellent resolution allows us precise measurement of higher order event plane

- Rapidity gap between HBT measurement and E.P. is $|\Delta \eta| > 0.9$
 - HBT \rightarrow Mid-rapidity (-0.8 < η < 0.8)
 - Event Plane \rightarrow Forward rapidity (-3.4 < η < -1.7, 1.7 < η < 5.0)

Analysis method for HBT

- 2.76 TeV Pb-Pb collisions
- Particle Identification
 - Charged pions are identified with TPC and TOF combined PID

Correlation function

- $C_2 = \frac{R(q)}{M(q)}$ R(q) : real pairs M(q) : mixed pairs (made by event mixing) q : relative momentum

Event mixing class

• Event with similar centrality, Z-vertex and Ψ_3 angle are used

Fit function

$$C_{2} = N\left[\left(1-\lambda\right) + \lambda K_{c}\left(1+\exp\left(G\right)\right)\right]$$

$$G = -R_{\text{out}}^{2}q_{\text{out}}^{2} - R_{\text{side}}^{2}q_{\text{side}}^{2} - R_{\text{long}}^{2}q_{\text{long}}^{2} - R_{\text{os}}^{2}q_{\text{out}}q_{\text{side}} - R_{\text{ol}}^{2}q_{\text{out}}q_{\text{long}} - R_{\text{sl}}^{2}q_{\text{side}}q_{\text{long}}$$

$$(K_{c} \text{ is Coulomb correction factor})$$

NC IS COULOND CORRECTION LACION

Event plane

• Ψ_3 is determined via FMD (1.7 < η < 5.0, -3.4 < η < -1.7)

Event plane resolution correction (U.Heinz, Phys.Rev.C66, 044903(2002))

Momentum resolution correction

Estimated with HIJING and GEANT

Azimuthal angle dependence of HBT w.r.t. Ψ_3

Initial ε₃ vs Relative amplitude

+ R²_{out,3} / R²_{out,0}

- ✓ Relative amplitude of R^{2}_{out} is positive
- ✓ -2 $R^{2}_{out,3}$ / $R^{2}_{out,0}$ increase with increasing initial ϵ_{3}
- - ✓ Relative amplitude of R^{2}_{side} is negative ($\epsilon_{initial} < 0.25$)
 - ✓ No centrality dependence can be seen
- + R²long,3 / R²long,0
 - ✓ Relative amplitude of R^{2}_{long} has almost no amplitude

Hydrodynamic model comparison

R²_{side,3} / R²_{side,0}

- ✓ N_{part} dependence of R²_{side,3} / R²_{side,0} can be reproduced by 3+1D hydrodynamic model within the systematic uncertainty
- ✓ $R^{2}_{out,3}$ / $R^{2}_{side,0}$ and $R^{2}_{os,3}$ / $R^{2}_{side,0}$ will be compared with hydrodynamic model ✓ Need k_T dependence !!

Summary

• Azimuthal angle dependence of HBT radii w.r.t. Ψ_3

- **R**out and **R**side oscillate in-phase
- Explicit oscillation of \mathbf{R}_{out} and small oscillation of \mathbf{R}_{side} can be seen
- \mathbf{R}_{long} and λ have almost no oscillation

Relative amplitude of squared HBT radii

- -2 $R^{2}_{out,3}/R^{2}_{out,0}$ is positive in centrality 10-50% and small centrality dependence
- $2\mathbf{R}^{2}_{side,3}/\mathbf{R}^{2}_{side,0}$ is negative in centrality 10-40%

Hydro dynamical model comparison

Bozek $R^{2}_{side,3}/R^{2}_{side,0}$ calculation shows good agreement within Syst. error

Outlook

- + Azimuthal angle dependence of HBT w.r.t. Ψ_3 in centrality 0-10% is ongoing
- + k_T dependence of HBT w.r.t. Ψ_3 for more precise understanding
- Azimuthally sensitive HBT with Event shape engineering (J. Schukraft et al., arXiv:1208.4563)
 - \checkmark Selecting of event by event v_n by the magnitude of flow vector
 - \rightarrow Impact on final source shape by larger triangular flow (initial ε_3)

Backup

Event plane resolution correction

• Event Plane Resolution Correction (Phys. Rev. C66, 044903 (2002))

$$N(q,\phi_j) = N_{exp}(q,\phi_j) + 2\sum_{n=1}^{n_{bins}} \xi_{n,m}(\Delta) \left[N_{c,n}^{exp}(q) \cos(n\phi_j) + N_{s,n}^{exp}(q) \sin(n\phi_j) \right]$$
$$N_{c,n}^{exp}(q) \cos(n\phi_j) = \langle N_{exp}(q,\phi_j) \cos(n\phi) \rangle = \frac{1}{n_{bins}} \sum_{n=1}^{n_{bins}} N_{exp}(q,\phi_j) \cos(n\phi_j)$$
$$N_{s,n}^{exp}(q) \sin(n\phi_j) = \langle N_{exp}(q,\phi_j) \sin(n\phi) \rangle = \frac{1}{n_{bins}} \sum_{n=1}^{n_{bins}} N_{exp}(q,\phi_j) \sin(n\phi_j)$$
$$n\Delta/2$$

$$\xi_{n,m}(\Delta) = \frac{n\Delta/2}{\sin(n\Delta/2)} \langle \cos\left(n\left(\Psi_n^m - \Psi_n^{true}\right)\right) \rangle \Rightarrow \text{ event plane resolution}$$

correction for q-distribution with EP resolution