HBT measurement with respect to event plane in Pb-Pb at 2.76TeV collisions from ALICE

2016.Sep.23
Naoto Tanaka for the ALICE collaboration
University of Tsukuba

JPS meeting @ University of Miyazaki
Space time evolution and azimuthal anisotropy

A powerful probe of hydrodynamic evolution

Azimuthal anisotropy

\[v_n = \langle \cos [n (\phi - \Psi_n)] \rangle \]

Event plane

\[\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{\sum w_i \sin(n\phi_i)}{\sum w_i \cos(n\phi_i)} \right) \]

Source shape @ freeze out

- A lot of parameters contributes to the final source shape
- Initial eccentricity, collective flow, evolution time and viscosity
- To quantify the properties of QGP, a precise understanding of spatial and temporal evolution is required
Method to measure the source size with two identical particles

- Quantum interference between two identical particles
- **Unique tool** to measure source size at kinetic freeze out
- Geometrical source size ≠ HBT radii = “Length of homogeneity”

\[C_2(p_1, p_2) = \frac{P(p_1, p_2)}{P(p_1)P(p_2)} \]

\[C_2(q) = 1 + \lambda \exp(-R^2q^2) \]

3D HBT analysis

Bertsch Pratt parametrization

\[C_2(q_{out}, q_{side}, q_{long}) = 1 + \lambda(-R_{out}^2q_{out}^2 - R_{side}^2q_{side}^2 - R_{long}^2q_{long}^2) \]

- \(R_{long} \): source size along the longitudinal direction (beam direction)
- \(R_{out} \): source along the pair transverse momentum + emission duration
- \(R_{side} \): source size along the perpendicular to \(R_{out} \)
- \(\lambda \): chaoticity = (in coherence) – (resonance) – (Background)
Azimuthally sensitive HBT with respect to Ψ_2

- Dividing the pair angle relative to the Ψ_2 in azimuthal plane
- Differential azimuthal angle HBT measurements explores spatial deformation of the source
- Hydrodynamical model shows oscillation in azimuthal angle dependence of HBT radii (out-of-plane extended source shape)

Hydrodynamic model
Au+Au 130GeV

Azimuthal angle dependence of HBT radii

nucl-th/0305084

Azimuthally sensitive HBT gives us more detailed information of space-time evolution
Azimuthal angle dependence of HBT w.r.t. Ψ_2

- R_{out} has explicit oscillation and R_{side} has weak oscillation
- R_{out} and R_{side} oscillate out-of-phase
 - Initial elliptic shape still remains at freeze out (out-of-plane extended source)
 - Fit function
 - $R^2_{\mu,0} + 2R^2_{\mu,n} \cos(n(\Phi_{\text{pair}} - \Psi_n))$
 - $R^2_{\mu,0}$: Average HBT radii
 - $R^2_{\mu,n}$: nth order Oscillation

- Final source eccentricity is obtained by relative amplitude from Blast Wave model
 - (Phys. Rev. C 70, 044907)
 - The magnitude of $R_{\text{out}} R_{\text{side}}$ relative amplitude decreases from central to peripheral collisions

- $R^2_{\text{out,2}} / R^2_{\text{side,0}}$
 - Final source eccentricity
 - $\varepsilon_{\text{final}} = 2 R^2_{\text{side,2}} / R^2_{\text{side,0}}$

- Contributing factors to $\varepsilon_{\text{final}}$
 - initial geometry
 - collective flow
 - freeze out time
Triangular deformation via HBT

- **AMPT and Blast wave model** (S. Voloshin, J. Phys. G38, 124097)
 - HBT w.r.t. Ψ_3 shows finite oscillation in expanding source, but almost no oscillation in static source

- **HBT w.r.t. Ψ_3 measured @ PHENIX Au+Au 200GeV** (Phys.Rev.Lett. 112 222301)
 - Same oscillation sign of R_{out} and R_{side} → Relative amplitude negative value

- **HBT w.r.t. Ψ_3 in LHC energy**
 - Difference between RHIC and LHC
 - Larger radial flow & evolution duration
 - Viscosity
 - Hydrodynamic model (P. Bozek, J. Phys. G38, 124097)
 - Relative amplitude of R_{side} is negative
 - Triangular deformation is washed-out or even reversed
In this analysis

- **VZERO**
 - Trigger & centrality
 - $V0_A : 2.8 < \eta < 5.1$
 - $V0_C : -3.7 < \eta < -1.7$

- **TPC & ITS**
 - Tracking & PID
 - Vertex
 - $|\eta_{\text{track}}| < 0.8$

- **TOF**
 - PID
 - $|\eta_{\text{track}}| < 0.8$

- **FMD**
 - Event plane
 - $FMD_A : 1.7 < \eta < 5.0$
 - $FMD_C : -3.4 < \eta < -1.7$
Event plane via FMD

The FMD Detector
- Silicon strip detector
- 3 sub detector: FMD1, FMD2, FMD3
- 2 types of rings: inner and outer
 - inner: 20 sectors (0 < φ < 2π)
 - outer: 40 sectors (0 < φ < 2π)

Event plane resolution
- Event plane resolution are extracted with 3 sub event method

\[
\text{Res} \{\Psi_n\} = \sqrt{\frac{\langle \cos(n(\Psi^A_n - \Psi^B_n)) \rangle}{\langle \cos(n(\Psi^A_n - \Psi^C_n)) \rangle}}
\]

FMD event plane and HBT measurement
- 3rd order harmonics, FMD resolution is approximately 15% better than V0
 - This excellent resolution allows us precise measurement of higher order event plane
- Rapidity gap between HBT measurement and E.P. is |Δη| > 0.9
 - HBT → Mid-rapidity (-0.8 < η < 0.8)
 - Event Plane → Forward rapidity (-3.4 < η < -1.7, 1.7 < η < 5.0)
Analysis method for HBT

- 2.76 TeV Pb-Pb collisions
- Particle Identification
 - Charged pions are identified with TPC and TOF combined PID
- Correlation function
 \[C_2 = \frac{R(q)}{M(q)} \]
 - R(q) : real pairs
 - M(q) : mixed pairs (made by event mixing)
 - q : relative momentum
- Event mixing class
 - Event with similar centrality, Z-vertex and \(\Psi_3 \) angle are used
- Fit function
 \[C_2 = N \left[(1 - \lambda) + \lambda K_c \left(1 + \exp \left(G\right)\right)\right] \]
 \[G = -R_{out}^2 q_{out}^2 - R_{side}^2 q_{side}^2 - R_{long}^2 q_{long}^2 - R_{os}^2 q_{out} q_{side} - R_{ol}^2 q_{out} q_{long} - R_{sl}^2 q_{side} q_{long} \]
 ✓ K_c is Coulomb correction factor
- Event plane
 - \(\Psi_3 \) is determined via FMD (1.7 < \(\eta \) < 5.0, -3.4 < \(\eta \) < -1.7)
- Momentum resolution correction
 - Estimated with HIJING and GEANT
Azimuthal angle dependence of HBT w.r.t. Ψ_3

Fit function

$$R^{2}_{\mu,0} + 2 R^{2}_{\mu,3} \cos(3(\varphi_{\text{pair}} - \Psi_3))$$

- $R^{2}_{\mu,0}$: Average HBT radii
- $R^{2}_{\mu,3}$: Oscillation amplitude

Average HBT radii
- ✓ centrality dependence

Azimuthal angle dependence
- ✓ R_{out} has explicit oscillation
- ✓ R_{side} has small oscillation
- ✦ R_{out} and R_{side} oscillate in-phase
 - unlike HBT w.r.t. Ψ_2
- ✓ R_{long} and λ have no oscillation
- ✓ Small centrality dependence
 - similar to v_3

Pb-Pb 2.76TeV in ALICE

Charged pion pair
(-0.8 < η < 0.8)

Event plane is determined with FMD

- ALICE work in progress
Initial ε_3 vs Relative amplitude

- $R^2_{\text{out,3}} / R^2_{\text{out,0}}$
 - Relative amplitude of R^2_{out} is positive
 - $-2R^2_{\text{out,3}} / R^2_{\text{out,0}}$ increase with increasing initial ε_3

- $R^2_{\text{side,3}} / R^2_{\text{side,0}}$
 - Relative amplitude of R^2_{side} is negative ($\varepsilon_{\text{initial}} < 0.25$)
 - No centrality dependence can be seen

- $R^2_{\text{long,3}} / R^2_{\text{long,0}}$
 - Relative amplitude of R^2_{long} has almost no amplitude
Hydrodynamic model comparison

ALICE Pb-Pb 2.76TeV

- $R^2_{\text{side,3}} / R^2_{\text{side,0}}$
 - N_{part} dependence of $R^2_{\text{side,3}} / R^2_{\text{side,0}}$ can be reproduced by 3+1D hydrodynamic model within the systematic uncertainty
 - $R^2_{\text{out,3}} / R^2_{\text{side,0}}$ and $R^2_{\text{os,3}} / R^2_{\text{side,0}}$ will be compared with hydrodynamic model
 - Need k_T dependence !!

3+1D Hydrodynamic model

- $R^2_{\text{side,3}} / R^2_{\text{side,0}}$
 - $0.2 < k_T < 2.0$
 - ALICE work in progress

(P. Bozek, J. Phys. G38, 124097)
Summary

✧ Azimuthal angle dependence of HBT radii w.r.t. Ψ₃
 • R_{out} and R_{side} oscillate in-phase
 • Explicit oscillation of R_{out} and small oscillation of R_{side} can be seen
 • R_{long} and λ have almost no oscillation

✧ Relative amplitude of squared HBT radii
 • $-2R_{\text{out},3}^2/R_{\text{out},0}^2$ is positive in centrality 10-50% and small centrality dependence
 • $2R_{\text{side},3}^2/R_{\text{side},0}^2$ is negative in centrality 10-40%

✧ Hydro dynamical model comparison
 • Bozek $R_{\text{side},3}^2/R_{\text{side},0}^2$ calculation shows good agreement within Syst. error

Outlook

✧ Azimuthal angle dependence of HBT w.r.t. Ψ₃ in centrality 0-10% is ongoing
✧ k_T dependence of HBT w.r.t. Ψ₃ for more precise understanding
✧ Azimuthally sensitive HBT with Event shape engineering (J. Schukraft et al., arXiv:1208.4563)
 ✓ Selecting of event by event v_n by the magnitude of flow vector
 ➡ Impact on final source shape by larger triangular flow (initial ε_3)
Backup

\[N(q, \phi_j) = N_{\text{exp}}(q, \phi_j) + 2 \sum_{n=1}^{n_{\text{bins}}} \xi_{n,m}(\Delta) \left[N_{c,n}^{\text{exp}}(q) \cos(n\phi_j) + N_{s,n}^{\text{exp}}(q) \sin(n\phi_j) \right] \]

\[N_{c,n}^{\text{exp}}(q) \cos(n\phi_j) = \langle N_{\text{exp}}(q, \phi_j) \cos(n\phi) \rangle = \frac{1}{n_{\text{bins}}} \sum_{n=1}^{n_{\text{bins}}} N_{\text{exp}}(q, \phi_j) \cos(n\phi_j) \]

\[N_{s,n}^{\text{exp}}(q) \sin(n\phi_j) = \langle N_{\text{exp}}(q, \phi_j) \sin(n\phi) \rangle = \frac{1}{n_{\text{bins}}} \sum_{n=1}^{n_{\text{bins}}} N_{\text{exp}}(q, \phi_j) \sin(n\phi_j) \]

\[\xi_{n,m}(\Delta) = \frac{n\Delta/2}{\sin(n\Delta/2) \left(\cos \left(n \left(\Psi_n^m - \Psi_n^{\text{true}} \right) \right) \right)} \]

Event plane resolution correction

- correction for q-distribution with EP resolution