LHC-ALICE実験のアップグレードに向けた 超前方光子測定用電磁カロリメータ Si PAD検出器 の性能評価

筑波大学大学院

数理物質科学研究科物理学専攻

高エネルギー原子核実験グループ

平野 勝大 for ALICE FoCal collaboration

三明 康郎、中條 達也、稲葉 基、江角 晋一、Oliver Busch、工藤 咲子、福田 悠裕、金 秉徹、伊藤 喬一郎

カラーグラス凝縮(CGC: Color Glass Condensate)

FoCalプロジェクト・FoCal-E

FoCal(Forward Calorimeter) (アクセプタンス:3.3 < η < 5.3) ・FoCal-E(電磁カロリメータ) ⇐ 本研究 - 直接光子の測定⇒γ/π⁰の識別 ・FoCal-H(ハドロンカロリメータ)

- ジェットの測定

- ・W/Siのサンドイッチ型サンプリングカロリメータ
 <u>W(タングステン):吸収層</u> + Si(シリコン)検出層
 →モリエール半径:R_M = 9.3mm
 放射長:X₀ = 3.5mm(1レイヤーに相当)
- ・2種類のモジュール
- HGL(High Granularity Layer) LGL(Low Granularity Layer)
 - CMOS-pixel

- •1レイヤー:64パッド(8×8)
- ・ピクセルサイズ: 25×25μm² ・パッドサイズ: 1×1cm²

→<u>シャワーの観測</u>

→<u>エネルギーの測定</u>

Utrecht University

<u>Oak Ridge National Laboratory & 筑波大学</u>

2016/03/19

テストビームトリガーロジック

解析手法

イベントセレクション

エネルギーの見積り方法

・クラスタリング ビームがあたったとされるパッドの周辺のみを用いてエネ ルギーの見積りの計算を行う(ビーム以外でシグナルと みなされているチャンネルを除くため) ストレートビームセレクトで判明したビームの入射位置を中心とした3×3の領域 LGL1 LGL2 LGL3 LGL4 75 | 73 115 113 78 80 118 120 118 120 78 80 115 113 75 98 100 66 68 127 125 95 93 71 69 111 109 82 84 122 124 122 124 82 84 111 109 71 69 95 93 127 125 66 68 98 100 102 104 70 72 123 121 91 67 65 107 105 86 88 126 128 126 128 86 88 107 105 67 65 91 89 123 121 70 72 89 102 104 106 108 76 119 117 87 77 101 90 92 116 114 116 114 92 103 101 77 79 76 106 108 85 79 87 85 74 117 81 94 110 112 96 94 97 99 83 81 81 83 99 97 94 96 112 110 112 110 94 96 99 97 83 83 81 97 99 96 110 112 90 101 103 79 114 116 92 87 117 119 76 74 108 106 108 106 76 74 117 119 85 77 101 103 92 77 85 87 79 90 114 116 70 121 123 128 126 88 86 105 107 65 89 91 121 123 72 70 104 102 104 102 72 89 91 65 67 105 107 88 86 128 126 67

100 98

68

66 125 127 93

95

69

73 75

: Hit channel

113 115

71 109 111 84 82 124 122

80

78 120 118

: Clustering region

: Dead channel

ASICの故障、APV chipの互換性の問題⇒

66

100 98

95 125 127 68

124 122 84

120 118 80 78 113 115

82 109 111 69

71

75

73

93

解析結果

エネルギー分布・線形性

シャワーの縦方向の広がり

2016/03/19

シャワーの縦方向の広がり

まとめ

- CERN-PS/SPSビームラインでビームテストを実施。
 - 幅広いエネルギーの多くのデータを取得。
 - 解析手法の確立。
 - エネルギー依存性:3%に収まる線形性を持っていることを確認。
 - エネルギー分解能:シミュレーションの値に近い性能を示す。
 - 縦方向のシャワープロファイル:理論値と一致する結果を得られた。

今後の課題

- エネルギー分解能の更なる向上のためのノイズ削減。
 - Summing Boardによるノイズ ⇒ 新たなSumming Boardの開発。
- HGL(MAPS)とのデータの統合。
- RUN3に導入する予定の実機の最終試作機に向けての新たな読み出しチップVMMなどの開発。

日本物理学会 第71回年次大会(2016)

18

ALICE検出器

前方方向の物理

2016/03/19

カラーグラス凝縮(CGC : Color Glass Condensate)

ALICE実験アップグレード計画

Low Granularity Layer(LGL)

Prototype(made by Oak Ridge National Laboratory)

Summing Board : 128ch出力 [-0~63ch : 1/1出力(positive signal) -64~127ch : 1/16出力(negative signal) ⇒<u>出力される極性によってゲインが違う</u>

<u>LGLモジュール</u> 構成 :W+Siレイヤー×4 シグナル :4レイヤーの合計値 読み出し部:ワイヤーボンディング →太さ数µmの導線

High Granularity Layer(HGL)

シミュレーションによる崩壊光子の観測(200GeV π⁰) 2016/03/19 日本物理学会 第71回年次大会(2016)

mmDAQソフトウェア

ATLAS micromegas検出器に使われている 个<u>APV chipと対応している</u>

2016/03/19

LGLマッピング

Positive output(1/1 output)

:dead channel

LGL1									
34	36	2	4	63	61	31	29		
38	40	6	8	59	57	27	25		
42	44	10	12	55	53	23	21		
46	48	32	30	33	35	19	17		
50	52	28	26	37	39	15	13		
64	62	24	22	41	43	1	3		
60	58	20	18	45	47	5	7		
56	54	16	14	49	51	9	11		

LGL2										
11	9	51	49	14	16	54	56		54	
7	5	47	45	18	20	58	60		58	
3	1	43	41	22	24	62	64		62	
13	15	39	37	26	28	52	50		52	
17	19	35	33	30	32	48	46		48	
21	23	53	55	12	10	44	42	ľ	44	
25	27	57	59	8	6	40	38		40	
29	31	61	63	4	2	36	34		36	

		LG	iL3			:ti	rig	gge	r
56	14	16	51	49	11	9			
60	18	20	47	45	7	5		31	:
64	22	24	43	41	3	1		27	:
50	26	28	39	37	13	15		23	:
46	30	32	35	33	17	19		19	:
42	12	10	53	55	21	23		15	:
38	8	6	57	59	25	27		1	
34	4	2	61	63	29	31		5	

31	29	63	61	2	4	34	36			
27	25	59	57	6	8	38	40			
23	21	55	53	10	12	42	44			
19	17	33	35	32	30	46	48			
15	13	37	39	28	26	50	52			
1	3	41	43	24	22	64	62			
5	7	45	47	20	18	60	58			
9	11	49	51	16	14	56	54			

IGI4

beam

Negative output(1/16 output)

LGL1

				-				
								75
98	100	66	68	127	125	95	93	71
102	104	70	72	123	121	91	89	67
106	108	74	76	119	117	87	85	77
110	112	96	94	97	99	83	81	81
114	116	92	90	101	103	79	77	85
128	126	88	86	105	107	65	67	89
124	122	84	82	109	111	69	71	93
120	118	80	78	113	115	73	75	

		LG	L2
73	115	113	78

111 109

87 117 119 76

95 125 127 68

91 121 123

 118 120

122 124

126 128

116 114

112 110

108 106

104 102

LGL3

LGL4

98 100

102 104

106 108

110 112

128 126

124 122

120 118

90 114 116

120	78	80	115	113	75	77				
124	82	84	111	109	71	69		95	93	127
128	86	88	107	105	67	65		91	89	123
114	90	92	103	101	77	79		87	85	119
110	94	96	99	97	81	83		83	81	97
106	76	74	117	119	85	87	1	79	77	101
102	72	70	121	123	89	91		65	67	105
98	<mark>68</mark>	66	125	127	93	95		69	71	109
								73	75	113

2016/03/19

^データ・フォーマット

```
root [0]
Attaching file run200.root as file0...
root [1] .ls
TFile**
            run200.root
       run200.root
TFile*
 KEY: TTree raw;1 rawapvdata
 KEY: TTree pedestals;1
                            apvpedestals
 KEY: TTree data;1 apvdata
 KEY: TTree run info;1
                          run info
                    config;1 parameters from config file
 KEY: TDirectoryFile
root [2] raw->Show(0)
=====> EVENT:0
               = 1
apv evt
time s
             = 1446376318
time us
            = 444581
apv_fecNo = (vector<unsigned int>*)0x7fcea2d56e60
            = (vector<unsigned int>*)0x7fcea2c258a0
apv id
             = (vector<unsigned int>*)0x7fcea07eb370
apv ch
            = (vector<string>*)0x7fcea2d57710
mm id
mm readout = (vector<unsigned int>*)0x7fcea07b52f0
mm strip = (vector<unsigned int>*)0x7fcea07bb290
               = (vector<vector<short> >*)0x7fcea07b8ff0
apv q
apv presamples = 0
root [3]
```

•apv_id:LGLの番号

•apv_ch: APV25 chipの出力チャンネル

・apv_q:各タイムビンでのADCの値

2016/03/19

LGLマッピング

MSR-006-R0-2013-FOCAL

I G	11	2
LO		-,~

56	60	64	50	46	42	38	34
54	58	62	52	48	44	40	36
16	20	24	28	32	10	6	2
14	18	22	26	30	12	8	4
49	45	41	37	33	55	59	63
51	47	43	39	35	53	57	61
9	5	1	15	19	23	27	31
11	7	3	13	17	21	25	29

LGL3,4

	,									
11	7	3	13	17	21	25	29			
9	5	1	15	19	23	27	31			
51	47	43	39	35	53	57	61			
49	45	41	37	33	55	59	63			
14	18	22	26	30	12	8	4			
16	20	24	28	32	10	6	2			
54	58	62	52	48	44	40	36			
56	60	64	50	46	42	38	34			

Summing Boardが逆方 向に付いているため マッピングも上下反転 している。

T9 Beam Composition

縦右向のシャワーの広がり

$$t_{\max} = 1.0 \times (\ln \frac{E_{incident}}{E_c} + C_j)$$

$$\begin{bmatrix} t_{\max} = \frac{x}{X_0} : \mathfrak{i} \times \eta \nabla - \mathfrak{o} \oplus \mathfrak{k} \times \mathfrak{o} \oplus \mathfrak{k} \\ E_{incident} : \mathfrak{k} \oplus \mathfrak{k} \times \mathfrak{i} \times \mathfrak{k} + \mathcal{k} \\ E_c : \mathfrak{k} \oplus \mathfrak{k} \times \mathfrak{k} \times \mathfrak{k} + \mathcal{k} \\ C_j : \mathfrak{k} \oplus \mathfrak{k} \oplus \mathfrak{k} \times \mathfrak{k} + \mathfrak{k} \\ \mathbb{k} \oplus \mathfrak{k} \oplus \mathfrak$$

• HGL

LGL1とLGL2の間:3mm厚の治具×2 LGL2とLGL3の間:3mm厚の治具×2

<u>アルミニウムのX₀=89mm</u>

 $4 \times X_0 + 6/89X_0 + 4 \times X_0 + 6/89 \times X_0 + 4 \times X_0 + 4 \times X_0$

- 重心系と実際の位置の差を求める

 $x_{hit}^{(s)} - x^{(s)}$ $y_{hit}^{(s)} - y^{(s)}$

・イベントセレクト

- ペデスタルカット

- タイムビンカット

- ストレートビームセレクト

- クラスタリング(3x3、5x5)

•2GeVビーム クラスタリング(5x5)

HGLとのデータマージ •動機

HGLとLGLのデータが一致していることがFoCal-Eを完成させるために必要

<u>問題点:LGLとHGLのトリガーの一致ができていない</u>

2016/03/19

↓1チャンネルヒット(20GeV)

LGL1

<u>シグナルが長いテールを持つような形が示される</u>

30GeV • • • 40GeV 50GeV •••••• • • • • •

1

2

3

4

1

2

3

4

1

2

3

Δ

MIMOSA Sensors

- Monolithic Active Pixel Sensors (MAPS)
 - Si-sensors + electronics in CMOS on single substrate
 - thin sensitive layer (≈20µm)
 - charge collection by diffusion
- existing chips
 - readout of analog signals by rolling shutter
 - slow: 640µs readout time
 - 0.35µm technology

M. Winter et al., IPHC Strasbourg

HAMAMATSU

シリコンフォトダイオード S10938-9959(X)

■ 材料仕様 項目 値 単位 結晶面方位 (1, 0, 0) 厚さ 500 ± 15 μm 裹面不感層 20 μm

■ 外形仕様

項目	値	単 位
chip size	93 × 93	mm
Number of PDs	64 (8 × 8)	ch
PD pitch(X)	11300	μm
PD pitch(Y)	11300	μm
Single P+ size	11250 × 11250	μm
Single Al size	11280 × 11280	μm
PAD size	100 × 200	μm
Number of PADs	4	/ch

■ 特性仕様

項目	値	単 位
Vfd	< 220	v
ld	< 20	nA/ch(VR=Vfd)
Ct	30	pF/ch(VR=Vfd)
NG ch	< 2	%(1ch MAX)

■ 検査仕様

項目	内容
ld	各 ch の ld、Vr=100V、150V、200V、250V
Ct	各 ch の Ct、Vr=100V、150V、200V、250V
Vfd	モニタ PD での Ct 測定値より換算

シリコンフォトダイオード S10938-9339(X)

■外形寸法図(単位:µm)

このカタログの記載内容は、平成22年4月現在のものです。製品の仕様などは予告なく変更することがありますので、あらかじめご了承ください。

☎(03)3436-0491ファックス(03)3433-6997

浜松ホトニクス株式会社

HAMAMATSU

WORKSHOP ON FORWARD PHYSICS AND HIGH-ENERGY SCATTERING AT ZERO DEGREES

