ALICE FoCal-E PAD 検出器の信号読み出しに 向けたVMM2 チップの性能評価

Examining the SRS VMM2 based hybrid as a frontend board for the ALICE FoCal-E Pad detector

Byungchul Kim for the RD51 collaboration, Tatsuya Chujo, Motoi Inaba^A, Hans Muller^B, George Iakovidis^B, Eraldo Oliveri^B

Contents

Introduction

ALICE FoCAl-E upgrade project at forward region Current readout electronics system for FoCAl-E Pad Current problems of FoCAl-E pad and possible solution

• New readout system with VMM

VMM2 Architecture - Complete ASIC Readout system of VMM2 hybrid Analysis software - NTU Athens

Results

3/19/16

Response check by internal Test Pulse DAC with oscilloscope Linearity check with internal test pulse by gain variation VMM test with Micro Megas detector

Summary & Outlook

Introduction

ALICE FoCA1-E upgrade project at forward region(LHC long shutdown in 2020)

FoCal-E (Electro-magnetic calorimeter)

HGL(High Granularity Layer)

Shower position measurement MAPS technology (pixel $25 \,\mu$ m)

Utrecht university(Nederland)

LGL(Low Granularity Layer)

Photon shower energy measurement Silicon PAD technology

Oak Ridge National Laboratory(U.S) & University of Tsukuba

> 4 layer LGLs + Summing Board

Current readout electronics system for FoCAl-E Pad

Current problems of FoCAl-E pad and possible solution

New readout system with VMM2 hybrid is tested with RD51 group.

New readout system with VMM

VMM2 Architecture - Complete ASIC

- VMM can get analog signal through shaper
- VMM has ADC(Analog Digital Converter) inside the chip =>This function makes digital signal out put
 - =>It could be faster readout system compare to APV25 based SRS system with shorted ADC process
- VMM has internal test pulse

Readout system of VMM2 hybrid

VMM2 hybrid

Analysis software NTU Athens software – connect and control VMM2

M2 Channels

ontrol		Global Registers	VMM2
s 10 0 0	2 1 0		
Open Communication All Al	ive	Ch. polarity negative 🗘 Analog tristates Off	1 1
Command	Channels	Gain (sg) 3.0 mV/fC 🗘 TAC Slop Adj (stc) 125 ns 🗘	2 ne
O APP FEC	HDMI 1 2		3 ne
S6 SPI		Veighbor Ingger (sng)	4 ne
🔵 Read 💽 Write		Leak. Curr. Enabled 🗘 Double Leak On 🗘	5 ne
All ᅌ Send 7495	2	Peak time (st) 200 pe	6 ne
Telesco Association	3		7 ne
The Delay ACQ Sync	50 00	ART On O Mode Timing At O Dual Clock Off	8 ne
81 () 100 () x25ns	6	ahim Off O ahim Off O ahit Off	9 ne
Trg Per ACQ Win	7		10 ne
3FFFE 4096 \$x25ns	8	Ch. Mon 1 (P DAC C SCMX Off C SBMX Off C	11 ne
Set	Set Mask		12 ne
Pulser External ACO On	Link Status	ADCs Enable	13 ne
400.0#	Reset Links	Direct Time Off O Mode 0 0	14 ne
Frame Ci			15 ne
Triane Cr Set	WarmInit FEC	8-bit Conv. Mode On Of Of	16 ne
Reset	VMM2 Reboot FEC	10b ADC 200ns ᅌ 8b ADC 100ns ᅌ 6b ADC Low ᅌ	17 ne
DDC			18 ne
10 0 0	9		19 ne
Connect Disconnect	N/A	Threshold DAC 300	20 ne
DAC Data Trigge	er Counter	Test Pulse DAC	21 ne
On Real Ena	able Enable	259.34 mV	23 ne
Off test Dis	able Clear	Load Calibratic Load Threshole 3	24 ne
Time Window	Read		25 ne
255 🗘 Set	Init	Ose Mapping	26 ne
un Control			27 ne
		Triggers 0 N.T.U. Athens	28 ne
		Hits 973195	29 ne
Directory prationData_2015_Jan:F	Feb	Start Run Stop Run	30 ne
Comments	Runt	2002 finished Trigger Data	31 ne
]	Write Data Show Channels Enable Debug	32 ne
EC Response		Calibration	ADDC
Clear		Gain Range	Clear
NEW PACKET RECEIVED		Threshold Range 200 0 300 0 50 0	
Data Received Size: 24 bytes Reg ID :7495		Pulser Bange 50 0 400 0 20 0	
Data, 1: 3 Data, 2: aaaaffff			
Data, 3: 0 Data, 4: 0			
		Hugote 1000 Manual Auto	

SP	SC	SL	ST	SM	0 mV	0	SMX	0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	•				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	,				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	٥	0 ns	0
negative	,				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	, <u> </u>				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	,				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	,				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	,				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	,				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	•				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	,				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	•				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	,				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	•				0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
negative	•				0 mV	0		0 ns	0	0 ns	0	0 ns	0

	SP	SC	SL	ST	SM	0 mV	0	SMX	0 ns	0	0 ns	0	0 ns	0
33	negativ					0 mV	0		0 ns	0	0 ns	0	0 ns	0
34	negativ	•				0 mV	0		0 ns	٢	0 ns	٢	0 ns	0
35	negativ	e 🔄				0 mV	0		0 ns	0	0 ns	0	0 ns	0
36	negativ	•				0 mV	0		0 ns	0	0 ns	٢	0 ns	0
37	negativ	e 🔄				0 mV	0		0 ns	0	0 ns	0	0 ns	0
38	negativ	•				0 mV	0		0 ns	0	0 ns	٥	0 ns	0
39	negativ	e 🔄				0 mV	0		0 ns	0	0 ns	0	0 ns	0
40	negativ	e 🔄				0 mV	0		0 ns	0	0 ns	0	0 ns	٢
41	negativ	•				0 mV	0		0 ns	0	0 ns	0	0 ns	0
42	negativ	e 🔄				0 mV	0		0 ns	0	0 ns	0	0 ns	0
43	negativ					0 mV	0		0 ns	0	0 ns	0	0 ns	0
44	negativ	e 🔄				0 mV	0		0 ns	0	0 ns	0	0 ns	0
45	negativ	•				0 mV	0		0 ns	0	0 ns	0	0 ns	0
46	negativ	e 🔄				0 mV	0		0 ns	0	0 ns	0	0 ns	0
47	negativ	•				0 mV	0		0 ns	0	0 ns	0	0 ns	0
48	negativ	e 🔄				0 mV	0		0 ns	0	0 ns	0	0 ns	0
49	negativ	e 🔄				0 mV	0		0 ns	0	0 ns	0	0 ns	0
50	negativ	•				0 mV	0		0 ns	0	0 ns	0	0 ns	0
51	negativ	e 🔄				0 mV	0		0 ns	0	0 ns	0	0 ns	0
52	negativ	e 🔄				0 mV	0		0 ns	0	0 ns	٥	0 ns	0
53	negativ	•				0 mV	0		0 ns	0	0 ns	0	0 ns	0
54	negativ					0 mV	0		0 ns	0	0 ns	0	0 ns	0
55	negativ					0 mV	0		0 ns	0	0 ns	0	0 ns	0
56	negativ					0 mV	0		0 ns	0	0 ns	0	0 ns	0
57	negativ					0 mV	0		0 ns	0	0 ns	0	0 ns	0
58	negative					0 mV	0		0 ns	0	0 ns	0	0 ns	0
59	negativ					0 mV	0		0 ns	٢	0 ns	٢	0 ns	0
60	negativ					0 mV	0		0 ns	0	0 ns	0	0 ns	0
61	negativ					0 mV	0		0 ns	0	0 ns	0	0 ns	0
62	negativ					0 mV	0		0 ns	0	0 ns	0	0 ns	0
63	negativ	e 🔄				0 mV	0		0 ns	0	0 ns	0	0 ns	0
64	negativ					0 mV	0		0 ns	0	0 ns	٥	0 ns	٥

Data Hea	ader	ACQ	TAC Stop
		VMM 🗘	INC Stop
2 ACO	0 0 0 Set	Set	ena-low 🗘 Monitoring
Off 🗘	Wait Time 50 C data	Apply 8X	c
Trigger		S	et Apply

3/19/16

日本物理学会 第71回年次大会

Control Glo	obal Registers
IPs 10 0 0 2 1 Open Communication All Alive Channels	Ch. polarity negative ♀ Analog tristates Off ♀ Gain (sg) 3.0 mV/fC ♀ TAC Slop Adj (\$ 125 ns ♀
● APP ○ FEC HDN 1 2 ○ S6 ○ SPI 1 ♥ ♥ ♥ ○ Read ● Write 2 ○ ○ All ○ Send 6 3 ○ 3 ○ ○ Trigger Acquisition - FEt 4 ○ ○ TP Delay Trg Per 5 ○ ○ 81 ○ SFFFE 6 ○ ○ ACQ Sync ACQ Win 7 ○ ○ 100 ○ 4096 ○ 8 ○ ○ BCID 8 ○ ○ Reset Set 0 ○ Set Set Mask	Neighbor Trigger (sr Off ≎ Disable At Peak Off ≎ Leak. Curr. Enabled ≎ Double Leak On Peak time (st) 200 ns ≎ Sub Hysterisis Off ART On <
Pulser External ACQ Off Reset Links Frame Cni < Trigger Cri < Set Resets Reset VMM2 WarmInit FEC S6	Direct Time Off ♦ 0
CKTK CKBC CKBC sk∉ 0 ns \$ 80MHz \$ 0 ns \$ set ✓ Auto Reset TK Pulses Set FEC Reset 2 \$ set Set	Threshold DAC 300 Test Pulse DA269.34 mV 300 Load Calibrati Load Thresho
Skev Widt Polari Ons ⇒ 128x25i ⇒ Positivé ⇒ Set	Use Mapping
Run Numt 9000 Angli 0 Clear C Director Start Comm@n/19/16 NA	Counters Hits 0 t Run Stop Run Calibrati Ignore 1 Trigger D P Calibrati Ignore 1

NA

-

Write Da

Gain

\$

\$

\$

-

-

~

It can select lots of gain as

0.5, 1, 3, 4.5. 6, 9, 12, 16 mV/fC

It could take Wider energy dynamic range

Peak time

It can select rise time Of signal 25, 50, 100, 200 ns

Monitoring channel

You can select channel From 1 to 64 channel

Results

Response check by internal Test Pulse DAC with oscilloscope

Pdo(peak detector output)
= return value of Amplitude
Tdo(time detector output)
= return value of Rise time

Linearity check with internal test pulse by gain variation

3/19/16

VMM test with Micro Megas

VMM2 Response check With Micro Megas detector

Summary & out look

Summary

- Development & Research of new readout for FoCAl E pad
- Built a test bench for VMM2 hybrid at RD51 lab
- Checked VMM2 hybrid response with internal, external pulse
- Tested VMM2 hybrid with Micro Megas detector

Out look

- development new software for test higher speed readout.
- VMM3(next version of VMM2) will be produced and tested as a new readout system.
- New LGL summing board toward VMM will be developed.
- Beam test will be conducted for FoCAl-E with VMM hybrid.

Back up

ALICE Upgrade Project - FoCal detector(toward LHC long shutdown at 2020years)

	Control		Global Registers				
For IP	IPs 10 0 0 Open Communication	2 1	Ch. polarity negative 3	Analog tristates Off			
Connection	Command	Channels	Gain (sg) 3.0 mV/fC C	AC Slop Adj (: 125 ns			
	APP O FEC	HDN 1 2	Neighbor Trigger (sr Off 🗘	Disable At Peak Off 🗘			
(ping status	G O Read Write		Leak. Curr. Enabled 🗘	Double Leak On 😂			
10.0.0.2)	All C Send 6	3 🗆 🗆 🗆	Peak time (st) 200 ns ≎	Sub Hysterisis Off	Gain		
,	Trigger Acquisition - FE	4 🗌 🗌 🗌 5 🗌 🗌 🗌	ART On ≎ Mode Timin	ng 🗘 Dual Clock Off 🗘	Peak time,		
Sending inter			sbfm Off \$\$ sbfp	Off ≎ sbft Off ≎	– Monitoring		
analog sign		8 0 0 0	Ch. Mon 10 🗘 SCMX	On (d ≎ SBMX Off ≎	Channel,		
within VMN	12 Reset Set	Set Mask Link Status	ADCs	Enable 😂	etc		
	Pulser External	Reset Links	Direct Time Off 😂 Moo	ie 0 🗘 0 😂			
	Frame Cn' C Trigger Cr	¢] Set	8-bit Conv. Mode On	≎ 6-bit Off I ≎			
Start	Resets		10b ADC 200 \$ 8b ADC	100 \$ 6b ADC Low \$			
acquisition	Reset VMM2 WarmInit F8	EC Reboot FEC	Dual Clock Data Off 😂	Dual Clock 6-bit Off			
	CKTK CKBC CK	BC ske	Threshold DAC	300			
	Auto Reset TK Pulses		Test Pulse DAC 269.34 mV	300			
	🗌 FEC Reset 2 🗘	Set	Load Calibrati D Load	d Threshr	Control internal		
	Test Pulse				test pusler DAC		
Decide	Skei Widt F	Polari	Use Mapping				
root name		Set Set	Start to make roo	t file Close to	make root file		
and directory	Run Control						
	Run Numt 9000 🗘 /	Angle 0 🗘 Cle	ear Counters Hits 0	REDOKHAVEN			
3/19/16	Director		當我un 第71回年次大会	NATIONAL LABORATORY	23		
	Commen		Calibrati □ Ignore 1 ✓ Write Da ✓ Show Chark Enable Del				

VMM2 Channels

	SP	SC SL) ST SM	0 mV \$SMX	ons Cons Cons C	SP (SC) (SL) (ST SM	0 mV \$SMX) Ons IC Ons IC Ons IC	
1	negative			o mv 🗘		[33] (negative)			o mv 🗘		j la
2	negative			0 mV 🗘		[34] (negative)			o mv 🗘		Τ̈́
3	negative			o mv 🗘 🗌		[35] [negative]			o mv 🗘 🗌	ons Cons Cons C	j l
4	negative			o mv 🗘		36 (negative)			0 mv 🗘		61channols
5	negative			o mvl ≎	ons ℃ ons ℃ ons ℃	37 negative			0 mV 🗘	ons Cons Cons C	040111111015
6	negative			o mvl ≎	0 ns 0 ns 0 ns 0	38 (negative)			0 mV 🗘	ons Cons Cons C	Ĵ
7	negative			o mvl ≎	ons Cons Cons C	39 negative			0 mV 🗘	0 ns C 0 ns C 0 ns C	Can be controlled
8	negative			o mv 😂 🔟	0 ns 0 ns 0 ns 0	40 negative			0 mV 🗘	0 ns C 0 ns C 0 ns C	Call be controlled
9	negative			o mv ≎	0 ns 0 ns 0 ns 0	41 negative			0 mV 🗘	0 ns 0 0 ns 0 0 ns 0]
10	negative			o mvl ≎	0 ns 0 ns 0 ns 0	42 negative			o mvl 🗘 🔟	0 ns 0 ns 0 ns 0	Ĵ
11	negative			o mvl ≎	0 ns 0 ns 0 ns 0	43 (negative)			0 mv 🗘	Ons COns COns C	
12	negative			o mvl ≎	0 ns 0 ns 0 ns 0	44 negative			o mvl 🗘 🔟	0 ns 0 ns 0 ns 0]
13	negative			o mvl ≎	0 ns 0 ns 0 ns 0	(45) (negative)			0 mv 🗘	0 ns 0 ns 0 ns 0)
14	negative			o mvl ≎	0 ns 0 ns 0 ns 0	46 negative			0 mv 🗘	0 ns 0 ns 0 ns 0	OD 1' (11 1 ')
15	negative			o mvl 🗘 🔟	0 ns 0 ns 0 ns 0	47 negative			0 mV 🗘	0 ns 0 0 ns 0 0 ns 0	SP=adjustable polarity
16	negative			o mvl 🗘 📘	0 ns 0 ns 0 ns 0	48 (negative)			0 mV 🗘	0 ns 0 ns 0 ns 0	
17	negative			o mvl ≎	0 ns 0 0 ns 0 0 ns 0	49 (negative)			0 mv 🗘	0 ns 0 0 ns 0 0 ns 0	SC=Sensor Canacitance
18	negative			o mvl ≎	0 ns 0 ns 0 ns 0	50 negative			0 mV 🗘	0 ns 0 0 ns 0 0 ns 0	Se sensor capacitance
19	negative			o mvi 🗘 🔟	0 ns 0 ns 0 ns 0	51 (negative)			o mv 😂 🔟		
20	negative			o mvl 🗘 🔟	0 ns 0 ns 0 ns 0	52 negative			o mvl 🗘 🔟	Ons ℃ Ons ℃ Ons ℃	SL=Leakage Current disable
21	negative			o mvl 🗘 🔟	0 ns 0 ns 0 ns 0	53 negative			o mvl 🗘 🔟	0 ns 0 0 ns 0 0 ns 0] 0
22	negative			o mvl 🗘 📘	0 ns 0 ns 0 ns 0	54 negative			o mvl 🗘 📘	0 ns C 0 ns C 0 ns C	
23	negative			o mvl 🗘 🔟	0 ns 0 ns 0 ns 0	55 negative			o mvl 🗘 🔟	Ons COns COns C	ST=1.2pF,Test Capacitor
24	negative			o mvl 🗘 🔟	0 ns 0 ns 0 ns 0	56 negative			o mvl 🗘 🔟	0 ns C 0 ns C 0 ns C	enable
25	negative			o mvl 🗘 🔟	0 ns 0 ns 0 ns 0	57 (negative)			o mvl 🗘 🔟	0 ns C 0 ns C 0 ns C	
26	negative			o mvl 🗘 🔟	0 ns 0 ns 0 ns 0	58 (negative)			o mvl 🗘 🔟	0 ns C 0 ns C 0 ns C	
27	negative			0 mV 🗘 🔟	0 ns 0 ns 0 ns 0	59 (negative)			0 mv 🗘 🔟	0 ns C 0 ns C 0 ns C	SM=Mask enable
28	negative			o mv 😂 🔟	vns ℃ vns ℃ vns ℃	60 (negative)			o mvl 🗘 🔟	uns ℃uns ℃uns ℃	
29	negative			o mvl 🗘 🔟	0 ns 0 ns 0 ns 0	61 (negative)			o mvl 🗘 🔟	0 ns C 0 ns C 0 ns C]
30	negative			o mvl 🗘 🔟	0 ns C 0 ns C 0 ns C	62 (negative)			0 mV 🗘	0 ns C 0 ns C 0 ns C	
31	negative			o mvl 🗘 🔟	0 ns C 0 ns C 0 ns C	63 (negative)			0 mV 🗘	0 ns C 0 ns C 0 ns C	
32	Bative	/16		o mvl 🗘 🔟	0 ns 0 ns 0 ns 0	64	理学会	2 集	71回年次		24
DDC	Der	pricated	t l								

ADDC

Run Control

Run Numt 9000 Angle 0 -	Clear Counters Triggers 0 Hits N.T.U. Athens Start Run Stop Run Enable Del NA Write Da Show Chanle Enable Del
FEC Response	Calibration
Clear	Gain Range 3.0 mV/fC ≎ 3.0 mV/fC ≎
Req ID :6	▲ Threshold Ranc 200 ♀ 300 ♀ 50 ♀
Data, 1: 3 Data, 2: aaaaffff	Pulser Range 200 🗘 300 🗘 50 🗘
Data, 3: 0	_ Channel Rang∈ 1 ≎ 1 ≎ ⊡ Masking
Data, 4: 0 Data, 5: 1	Events 1000 🗘 O Auto

Calibration => It can make macros with internal test pulse. Gain, Pulse range, channels, Number of Events

Trigger Data => to observe response of VMM2 with external trigger

You can check the analog signal before Analog Digital Conversion With oscilloscope

000

Ø

IIIIZU

46140

1.5-101

£#

00

-WWO Ø

2n

1.5-101M

KD 21

4614079

00. 000

RD51 Collaborationの紹介 Development of Micro-Pattern Gas Detectors Technologies

- ・Micro Pattern Gas Detectors技術的発展とその応用を目指す。
- ・その技術の基礎と応用された研究に向けて必要とされる electronic-readout systemの開発も行なっている。
- APV25, VMM prototypeを開発した。

Some bugs of VMM

しかし、VMM2 prototype チップにはバグがある。

バグはどこからくるのか?

reason1) Cross talk reason2) bit flipping reason3) 原因が分からないバグ

Reason 1) Cross talk (high gain and high Test Pulse DAC)

21チャンネルのみにアナログ信号を送った結果、違うチャンネルのでも 反応をしていることが確認できた。

2) Bit flipping

Meanデータの倍数に信号が来るように見える現象があった。

3/19/16

reason3) chip is bad.

Cross talkとBit flippingの現象以外にも原因が分からない

結果が見えた。この結果もprototypeのバグとして考えられる。

Check VMM2 Thermal data.

I tested thermal result of VMM2

With agilent u1251b.

This Ceramic has lots of small holes.

VMM2チップの温度が上がり、チップに損害を与える可能性があったため、 温度低下のため、Ceramicを用いたVMM2チップの温度調節

70°C->60°C

時間 Vs 温度

SRS System card

 ・D-CARD
 <= VMM2から送られて来た デジタル信号をFEC boardに送る。
 <= VMM2に電力を提供する。 (VMM2の消費電力はAPV25の3倍)

・FEC V6 <= D-CARDからのデータを処理 し、PCヘデータを送る。 SRS logo Backside protectors Minicrate AB Universal power 110-240V Vniversal power 110-240V Vtility power (+12,+5,+3)

電源モジュールを搭載した mini crate などをまとめたシステムのことである DCARD FEC V6

Analog response with internal pulser

Gain 3.0 mV/fC , Test pulser DAC 400

100ns

200ns

3/19/16

VMM2 chip

test_bc_[0]

One channel test

日本物理学会 第71回年次大会

Signal from Function Generator

SALTA

